
Improved Generalized Planning with LLMs through Strategy Refinement and
Reflection

Katharina Stein1, Nils Hodel1, Daniel Fišer3, Jörg Hoffmann1,2, Michael Katz4, Alexander Koller1

1Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
2German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany

3Aalborg University, Denmark; 4IBM Research, US
Correspondence: kstein@lst.uni-saarland.de

Abstract

LLMs have recently been used to generate Python programs
representing generalized plans in PDDL planning, i.e., plans
that generalize across the tasks of a given PDDL domain. Pre-
vious work proposed a framework consisting of three steps:
the LLM first generates a summary and then a strategy for the
domain, both in natural language, and then implements that
strategy as a Python program, that gets debugged on example
planning tasks. In that work, only one strategy is generated
and passed directly to the program generation. If the strat-
egy is incorrect, its implementation will therefore result in an
incorrect generalized plan. Here, we introduce an approach
that generates the strategy in the form of pseudocode and en-
ables automatic debugging of the pseudocode, hence allow-
ing us to identify and fix errors prior to the generation of the
generalized plan itself. Additionally, we extend the Python
debugging phase with a reflection step prompting the LLM
to pinpoint the reason for the observed plan failure. Finally,
we take inspiration from LLM code generation to produce
several program variants and pick the best one. Running ex-
periments on 17 benchmark domains with two reasoning and
two non-reasoning LLMs, we show that these extensions sub-
stantially improve the quality of the generalized plans. Our
best performing configuration achieves an average coverage
of 82% across the domains.

Code —
https://github.com/coli-saar/genplan-strategy-refine

Datasets — https://github.com/coli-saar/genplan-strategy-
refine/tree/main/data

Introduction
Large Language Models (LLMs) have revolutionized a large
variety of tasks not only from the field of natural language
processing but also from other areas of AI research. One
very active area of research deals with LLMs in the context
of reasoning problems, and there has been growing interest
in using LLMs for symbolic planning in the PDDL language
(McDermott 2000; Haslum et al. 2019).

First approaches use LLMs to generate a plan based on
the PDDL or natural language (NL) definition of a task.
Non-reasoning LLMs tend to not perform well in this set-up
(e.g. Stein et al. 2025; Kambhampati et al. 2024; Silver et al.
2022). Improvements have been achieved by incorporating
thoughts and automatic corrections based on feedback into

the process (e.g. Stein et al. 2025; Stechly, Valmeekam, and
Kambhampati 2025), and reasoning LLMs achieve much
better results. Yet scalability to larger tasks still tends to be
inferior to the symbolic state of the art (e.g. Corrêa, Pereira,
and Seipp 2025; Valmeekam et al. 2025), especially on un-
seen domains. In addition, even where they scale, these ap-
proaches can become costly in the number of LLM calls and
processed tokens, being called on every planning instance
(sometimes on every state in a plan), and with the number of
tokens generated growing linearly in plan length.

Silver et al. (2024) proposed an approach that has the po-
tential to overcome these issues. Instead of using LLMs to
generate plans for individual tasks, they prompt the LLM to
produce a generalized plan, that generalizes across the tasks
of a given PDDL domain (e.g. Srivastava, Immerman, and
Zilberstein 2011). A generalized plan contains branches (if-
then-else behavior) and loops to deal with different cases and
scaling task size. Silver et al. (2024) show how to use LLMs
to generate Python programs representing such plans. This
solves the issue regarding cost for LLM calls, as that cost is
now per-domain instead of per-task. It also potentially ad-
dresses the scalability issue: if the generalized plan is cor-
rect, planning tasks of arbitrary size can be solved.

Silver et al. let an LLM generate strategy a in NL for the
given PDDL domain. They then prompt the LLM to gener-
ate Python code for that strategy, that is then debugged (see
Figure 1, top part). Silver et al.’s approach achieves good
performance on tasks of varying size in 5 out of 7 tested do-
mains when using GPT-4. However, when extending their
evaluation to a larger set of domains, we find that their ap-
proach struggles with generating correct generalized plans.

A key bottleneck of their approach is the strategy gen-
eration step: they use a simple prompting approach to let
the LLM create a generalizing NL strategy, which is directly
passed to the code generation. If the strategy is incorrect, the
LLM is hence prompted to generate a Python function that
implements an inadequate logic.

Here we address this limitation by treating the strategy
generation not only as a Chain-of-Thought (CoT) step (Wei
et al. 2022) but as a central part of the generalized planning
framework that is responsible for an important sub-task. Fig-
ure 1 (bottom) provides an overview of our pipeline. Our
main contribution is an approach that allows us to automati-
cally validate and refine the strategy before passing it to the

Pseudocode
strategy

Generalized
plan

Reflection about mistake

Revision

NL domain

Pseudocode
strategy
Python ex. task

Instructions

NL domain
NL example
tasks
Instructions

Program Validation
&

Feedback Generation

Revision

PDDL domain

Instructions LL
M

 1

Feedback mistake

NL strategy Instructions

LL
M

Revision

PDDL domain
PDDL example
tasks

Instructions

NL task

PDDL task

Select last
generalized plan

1) NL Generation 2) Strategy Generation 3) Code Generation

Select best generalized plan

Silver et al. 24

Ours

Strategy Validation
&

Feedback Generation

Feedback mistake

xx

x

Select
best

NL summary Instructions

NL domain

LLM 1

LL
M

 2

Generalized
plan

LL
M

 3

Program Validation
&

Feedback Generation

Feedback mistake

LLM 3

LL
M

LL
M

LLM

LLM 3

Reflection about mistake

LLM 2

LLM 2Instructions

x

Figure 1: Overview of the framework of Silver et al. (2024) (top) and our framework (bottom). The main three parts for both
are the NL generation, the strategy generation and lastly the code generation, i.e. the generation of the generalized plan.

code generation. Furthermore, our approach generates the
strategy in the form of pseudocode, that is already closer to
the final target structure. For the refinement, we let an LLM
generate PDDL plans for a set of debugging tasks based on
the pseudocode, and we check correctness of these plans.
We then pass the feedback about errors into a reflection step
(inspired by e.g. Shinn et al., 2023; Madaan et al., 2023).
In that step, the LLM is prompted to identify the responsi-
ble location in the pseudocode, and the reason for the mis-
take. The LLM is then prompted to update the pseudocode
accordingly. We select the best pseudocode based on the de-
bugging tasks as the strategy to be implemented.

We also introduce some improvements over Silver et al.’s
approach in the code generation step. First, we also add a re-
flection step to the automated debugging of the Python pro-
grams. Second, we take inspiration from LLM-based code
generation to produce several initial versions of the program
(e.g. Tang et al. 2024; Wang et al. 2024). We pick the best
program based on performance on the debugging tasks.

We empirically evaluate our method on 17 PDDL do-
mains, including the ones Silver et al. ran their experiments
on, using GPT-4o, Llama3.3, DeepSeek-V3.2 and Qwen3-
Thinking as the LLMs. Compared to Silver et al., our ap-
proach improves average performance across domains sub-
stantially for all four LLMs. Our approach in combination
with DeepSeek solves on average 82% of the evaluation
tasks. In 14 domains, our approach achieves perfect cov-
erage for at least one of three runs. We manually verified
that our 100% coverage programs generalize beyond the
evaluation data and to all tasks that can be generated using
the respective instance generator. In experiments on a range
of ”costumed” benchmarks that do not appear in the LLM
training data, our approach also exhibits good performance,
indicating its generalization capabilities.

(:predicates (object ?obj) (location ?loc) (at ?obj ?loc) ...)

(:action load-truck

:parameters (?obj ?truck ?loc)

:precondition (and (object ?obj) (truck ?truck) (location ?loc)

(at ?truck ?loc) (at ?obj ?loc))

:effect (and (not (at ?obj ?loc)) (in ?obj ?truck)))

(:objects c0 t0 l0-0 l1-0 p0 a0)

(:init (truck t0) (location l0-0) (location l1-0) (object p0)

(airplane a0) (airport l0-0) (at t0 l0-0) (at p0 l1-0) ...)

(:goal (and (at p0 l0-0)))

Figure 2: Excerpt from the Logistics PDDL domain (top)
and a Logistics PDDL problem (bottom).

Background
Classical planning. In classical planning the task is to find
a sequence of actions (a plan) that leads from a given ini-
tial state into a state that satisfies a goal condition. A com-
monly used formalism to define classical planning tasks is
the Planning Domain Definition Language (PDDL) (McDer-
mott 2000; Haslum et al. 2019). In PDDL, a planning task is
specified by a domain along with a problem. The domain de-
fines the world model, including the predicates for describ-
ing the possible world states and all actions that can be used
to change the state. Each action has preconditions specifying
what needs to be true in order to apply the action, and effects
that specify how applying the action changes the world state.
A specific problem file defines a set of available objects, the
initial world state and the goal. The solution is a plan con-
sisting of actions from the domain.

Figure 2 (top) shows an excerpt from the Logistics do-
main that models transporting packages with trucks within
cities and with planes between cities. The action “load-
truck” can only be executed if the parameter “?truck” is a
truck, “?obj” an object and “?loc” a location, and if “?truck”
and “?obj” are both at “?loc” (precondition). Applying the
action changes the location of the package from ?loc to the

?truck (effect). Figure 2 (bottom) shows part of a task where
the goal is to move package “p0” from “l1-0” to “l0-0”.

While there are no formal constraints on the possible ini-
tial states and goals, the instance generators used to con-
struct benchmarks usually only generate a subset of all pos-
sible tasks. For example, Logistics benchmarks only include
tasks where the goal specifies locations of packages but
never e.g. a location of a vehicle.

Generalized planning. Generalized planning (e.g. Bonet,
Palacios, and Geffner 2009; Srivastava, Immerman, and Zil-
berstein 2011; Jiménez, Segovia-Aguas, and Jonsson 2019)
seeks plans that generalize over a set of planning tasks. Dif-
ferent variants of this problem have been discussed in the
literature. Here, we follow up on Silver et al.’s (2024) work,
which generates Python programs intended to generalize
over all tasks in a given PDDL domain. The right part of
Figure 3 shows an excerpt of such a program that outputs a
plan for a specific input task.

The top part of Figure 1 illustrates Silver et al.’s pipeline.
It consists of three steps, of which the first two serve as CoT
steps. First, the LLM is prompted to generate a short sum-
mary of the domain (green color in the figure) based on the
PDDL domain file and exemplary PDDL tasks. Afterwards,
the LLM receives a prompt stating that there exists “a sim-
ple strategy for solving all tasks in this domain without using
search”, and is prompted to tell the strategy (peach color).

Then, the LLM is asked to implement that strategy as a
Python program, i.e. the generalized plan (blue). For this
step, it receives the function signature and a short descrip-
tion of the inputs and output. Silver et al. then use an auto-
matic debugging approach to iteratively revise the general-
ized plan based on the outcome of running the program on a
set of training tasks. If the program interrupts with an error,
reaches a timeout or does not return a correct plan - as de-
termined by the plan validator VAL (Howey, Long, and Fox
2004) - the LLM receives a new prompt with a feedback
(coral color) and the instruction to fix the code. The feed-
back includes details about the error that occurred and the
PDDL defition of the task for which it occurred. This pro-
cess continues until all training tasks are solved or a maxi-
mum number of revisions, KC , is reached. The last Python
program obtained in this manner is selected as the output.

Generating and Refining Pseudocode
Strategies

Generating generalized plans for planning domains using
LLMs is a complex task that poses two main challenges. Be-
cause the LLM only has access to the domain and example
tasks, it first needs to abstract away from individual tasks
to the higher-level logic that generalizes across the domain,
i.e. a strategy. Second, the LLM is required to implement
that strategy in an executable form, a Python program in our
case. The correctness of the final program therefore heav-
ily depends on the quality of the generated strategy, as this
serves as a kind of program specification. We therefore treat
the strategy generation as a separate subtask in our frame-
work with the dedicated purpose of generating a strategy
that is correct and closely matches the specification of the

target program, hence reducing the complexity of the code
generation itself.

Generating Pseudocode Strategies
Our goal is to improve the quality of the strategies that the
LLM is asked to implement in order to shift most of the
work beyond the mere conversion into Python to the previ-
ous step of the generation framework. We therefore instruct
the LLM to generate the strategy in the form of pseudocode
that should be detailed and specific enough to be converted
into an executable program in a straightforward way. The
prompt for this step consists of the NL descriptions of the
domain and two example tasks and instructions to think step-
by-step (zero-shot CoT, Kojima et al., 2022) for developing
a strategy that can be turned into a program.

The left part of Figure 3 shows part of the output gen-
erated for the Logistics domain consisting of the thoughts
(top, yellow) and the pseudocode (bottom, peach color) that
gets extracted for the subsequent steps. We show inputs to
the LLM in regular font and LLM outputs in italics in all
Figures. The right part of Figure 3 shows an excerpt of a
generalized plan for Logistics. While the pseudocode strat-
egy is expressed in natural language, it includes key words
such as “for each”, “if”, “continue”. Furthermore, the steps
are enumerated in a structured and nested way that closely
matches the overall structure of the final Python program as
indicated by the arrows.

Pseudocode strategies hence express the strategy in a
more detailed form, specifically structured in a way that is
useful for its actual target use case. If an LLM is simply
asked to generate a strategy and produces a simple, natural
language summary of it, more work needs to be done (im-
plicitly) to map this strategy into a program.

Debugging at the Strategy Level
If the strategy generated by the LLM is wrong, then an im-
plementation of it will also result in a wrong generalized
plan. We address the challenge of improving the correctness
of the strategy by introducing an approach for automatically
validating and refining the pseudocode.

Validating the pseudocode strategies without a human in
the loop is hard as the pseudocode is not executable, i.e. we
cannot run it on example tasks and assess the correctness of
the outcome. Letting an LLM judge its own output for rea-
soning problems can even lead to worse performance (e.g.
Stechly, Valmeekam, and Kambhampati 2025). Therefore,
we introduce an approach that indirectly validates the cor-
rectness of the pseudocode using an LLM and a symbolic
plan validator as illustrated in Figure 4 (left). We use a small
set of tasks from the target domain as debugging tasks. In
particular, we provide the pseudocode strategy to an LLM
and prompt it to generate the PDDL plan for a given debug-
ging task (in NL) by following the strategy. The generated
plan is then validated using VAL. If the plan is incorrect, the
validation output is converted into a feedback message. For
the conversion, we incorporate the feedback generator Stein
et al. (2025) used for their experiments on PDDL inputs.

Instead of directly prompting the LLM to update the pseu-
docode based on the feedback, we add a reflection step, in-

def generate_solution(objects: Set[str], init: Set[Tuple], goal: Set[Tuple]) -> List[str]:
...

def move_truck(truck, loc_from, loc_to, city, state):
if loc_from != loc_to:

solution.append(f'(drive-truck {truck} {loc_from} {loc_to} {city})‘)
...

solution = []

current_state = {} # Initialize the current state from the initial facts
for fact in init:

...

for fact in goal:
if fact[0] == 'at':

obj, goal_loc = fact[1], fact[2]
current_loc = find_location(obj, current_state)
if current_loc == goal_loc:

continue

current_city = find_city(current_loc, current_state)
goal_city = find_city(goal_loc, current_state)

if current_city != goal_city:
truck, truck_loc = find_nearest_truck(current_loc, current_city, current_state)
move_truck(truck, truck_loc, current_loc, current_city, current_state)
solution.append(f'(load-truck {obj} {truck} {current_loc})')
...

else:
truck, truck_loc = find_nearest_truck(current_loc, current_city, current_state)
...

return solution

```
1. Initialize the current location of all vehicles (trucks and airplane).
2. For each package p in the list of packages:

a. If p is already at its goal location, continue to the next package.
b. Determine the current location of p and its goal location.
c. If p's current city is different from its goal city:

i. Identify the nearest truck to p's current location.
ii. If the truck is not at p's current location, drive the truck to

p's current location.
iii. Load p onto the truck.
iv. Drive the truck to the nearest airport in the current city.
v. Unload p from the truck at the airport.
vi. Check the current location of the airplane. If the airplane is

not at the airport, fly it to the airport.
vii. ...

d. If p's current city is the same as its goal city:
i. Identify the nearest truck to p's current location.
ii. ...

### Step-by-Step Strategy Development:
1. **Identify the Initial and Goal States:**

- Determine where each package is initially located and where it ...   
2. **Plan the Movement of Packages:**

- For each package, determine if it needs to be moved. If a package
is already at its goal location, no action is needed for that package.

- If a package needs to be moved to a different city, plan to use an 
airplane. Otherwise, use a truck.  ... 

Figure 3: Left: Excerpt of the LLM output for generating a pseudocode strategy for the Logistics domain, consisting of a
CoT (top, yellow color) and the pseudocode (bottom, peach color). Underlined steps were initially missing and added during
debugging. Right: excerpt of a generalized plan implementing the pseudocode strategy. Arrows illustrate corresponding parts.

Instructions
Valid PDDL actions

Pseudocode strategy

NL domain
NL debugging task

LLM

PDDL plan

VAL +
Feedback Generator

Please help me to understand why this mistake happened.
Think about
1) which specific part of the strategy lead to the mistake and
2) why this part of the strategy is not adequate
Do not provide any revisions yet but enough details to understand
why the strategy does not work for the task without revisions.

The following plan was created based on the strategy:
(load-truck p0 t0 l0-2)
(drive-truck t0 l0-2 l0-0 c0)
(fly-airplane a0 l1-0 l0-0)
(load-airplane p0 a0 l0-0)
...
The action (load-airplane p0 a0 l0-0) at step 3 is not executable
because the preconditions of the action are not satisfied:
At that specific step
- it is not the case that (at p0 l0-0)

Feedback mistake

Figure 4: Left: approach for generating a PDDL plan for
a debugging task based on the pseudocode and obtaining a
feedback message (coral color). Right: example prompt for
the reflection step consisting of a feedback message for a
Logistics task and instructions (grey color).

spired by approaches that let LLMs reflect about ways to im-
prove over previous outputs (e.g. Madaan et al. 2023; Shinn
et al. 2023). We combine the feedback about the mistake and
the generated plan and with instructions to reflect about the
part of the pseudocode that caused the mistake and the rea-
son why that part is incorrect. After generating the reflection
response based on that prompt, the LLM is then asked to cor-
rect the pseudocode by thinking step-by-step. This process
is continued until the LLM generates correct plans for all
debugging tasks or a maximum number of debugging itera-
tions, KS , is reached. Then the pseudocode that resulted in
the highest number of solved tasks is selected as the pseu-
docode for the code generation step.

1. **Specific Part of the Strategy**:
- ... occurs at the step where the package is supposed to be loaded onto the airplane.

2. **Why This Part of the Strategy is Not Adequate**:
- The strategy assumes that once the truck reaches the airport, the package can be

directly loaded onto the airplane. However, the strategy does not explicitly include ...
- The precondition for loading an object onto an airplane is that the object must be at 

the same location as the airplane. In the plan, the package p0 is still inside the truck t0 
when the action to load it onto the airplane is attempted. This violoates the ...

The strategy needs to be revised to include an explicit step to unload the package from
the truck at the airport before attempting to load it onto the airplane...

Figure 5: Excerpt of the reflection generated for the example
in Figure 4

One bottleneck is that there is no guarantee that the LLM
will generate a correct plan given a correct strategy or that
a mistake in the plan is actually caused by a mistake in the
strategy. However, our approach guarantees that the feed-
back the LLM achieves about the mistake is always correct
with respect to the plan. Additionally, if the pseudocode is
missing important details or steps, and the LLM generates a
plan reflecting this issue, then our approach makes it possi-
ble to automatically find and potentially correct these issues.

Figure 4 (right) shows an example of a reflection prompt,
including the feedback message for a plan (coral color) that
was generated based on the first version of the pseudocode
in Figure 3, where the underlined steps were missing before
debugging. In particular, the step of unloading the package
from the truck before loading it onto the airplane (v.) was
missing and the LLM generated a plan that was missing that
step as well. In order to load a package onto an airplane in
Logistics it needs to be at the same location and not in an-
other vehicle. The excerpt of the generated LLM reflection



in Figure 5 illustrates that the LLM correctly identified the
mistake and the required extension of the pseudocode.

NL descriptions. For the strategy validation approach, we
provide the domain and debugging task in NL form. There-
fore, we require a separate NL description for each de-
bugging task. We obtain the NL descriptions in a two-step
process (see NL Generation, Figure 1): First, the LLM is
prompted to generate the NL domain description given the
PDDL domain. Afterwards, the NL description of each de-
bugging task is generated based on its PDDL definition and
the PDDL and NL domain descriptions. We also use that NL
domain description and two debugging task descriptions as
input for the pseudocode generation.

Adding Reflection to Code Debugging
While LLMs perform well on generating short, single-
fuction code, generating larger code with several, depen-
dent functions is complex (Tang et al. 2024; Du et al. 2024).
Therefore, the automatic refinement based on feedback is
important. However, debugging itself can also be complex,
especially when the mistake that occurs needs to be traced
back to the actual, logical error in the code. We therefore use
a similar approach as for the strategy debugging, where the
LLM is first asked to reflect on the location and reason of
the error before revising the program (see Figure 1, step 3).

We run the generated program on all debugging tasks and
create not only negative feedback but also positive feedback
as additional information for the debugging. We include all
solved debugging tasks in their Python format together with
the correct outputs in the feedback prompt. We then add one
task for which the program returned an incorrect output to-
gether with the feedback message. Figure 6 shows an exam-
ple of the positive and negative feedback (coral color) and
the reflection instructions (grey color). If the code returns an
incorrect output, we again use the feedback generator from
Stein et al. (2025) to convert the output of VAL. Addition-
ally, we also enumerate the steps in the output plan in the
feedback message, to make it explicit to which action a feed-
back of the form “the action ACTION in step X is not exe-
cutable” actually refers. We provide more details about the
feedback messages in the supplementary material.

Producing Multiple Code Versions
One common approach used for LLM-based code genera-
tion is to generate not only a single program but several
output programs by using a higher temperature or nucleus
sampling (Holtzman et al. 2020), i.e. increasing the cumula-
tive probability threshold based on which the set of tokens to
sample from is determined (e.g. Tang et al. 2024). We also
propose to generate multiple program versions based on the
same strategy, but operationalize this in a different way and
keep greedy decoding and the temperature of 0. Instead, we
randomly change the order in which the objects and the facts
of the goal state of the Python example task are presented in
the prompt. Apart from this small change, the input prompts
are the same for generating all initial programs.

The different initial programs are generated and debugged
one after the other. Specifically, the LLM generates the first

Please help me to understand why this mistake happened.
Think about
1) which specific part of the code lead to the mistake and
2) why this part of the code is not adequate for implementing a correct strategy
Do not provide any revisions yet but enough details to understand why the code does
not work for the task without revisions and which specific parts need to be adapted.

The code you provided me solved the following tasks correctly:
objects = {...} \n init = {...}  \n. goal = {...}
The code returned the correct output: ...

The code failed on the following task:
objects = {'a0', 'c0', 'c1', 'l0-0', 'l0-1', 'l1-0', 'l1-1', 'p0', 'p1', 'p2', 't0', 't1'}
init = {('airplane', 'a0'), ('airport', 'l0-0 ), ('at', 'a0', 'l0-0'), ('at', 'p0', 'l1-1 ), ...}
goal = {('at', 'p0', 'l0-1'), ('at', 'p1', 'l1-1'), ('at', 'p2', 'l1-0')}

The code raised the following exception:
Traceback (most recent call last):
File "<file-name-omitted>", line 56, in generate_solution
current_state.remove(('at', truck, current_loc))

KeyError: ('at', 't0', 'l0-0')

Figure 6: Prompt for the reflection about mistakes in the
generated Python program, consisting of the reflection in-
structions (grey color) and an example feedback message
obtained for a Logistics debugging task (coral color).

program, and the debugged versions of it, as described in
the previous section. If none of the programs solves all the
debugging tasks, the code generation part is restarted with
the newly sampled ordering. The code generation stops if a
program solves all debugging tasks or a defined limit N of
initial programs is reached. Finally, the best program is se-
lected from all generated ones based on the debugging data.

Experiments
Benchmarks. We consider domains expressed using a
STRIPS subset of PDDL that allows variable typing and is
restricted to conjunctive conditions with negation. We con-
duct experiments on the seven domains on which Silver et al.
(2024) evaluated their approach, and on 10 of the domains
on which Stein et al. (2025) ran LLM action-choice exper-
iments. We remove all action costs from the domains. For
each domain, we compose a dataset of tasks taken from pre-
vious work and tasks generated by us using available in-
stance generators. We randomly select 6 debugging tasks per
domain that are small compared to the tasks in the evaluation
data. In particular, we only consider tasks for which we can
obtain optimal plans, and the number of objects and optimal
plan length of each debugging task is among the 16 small-
est values of object number and plan length in the overall
dataset (see supplementary material for more details).

Costumed and anonymized benchmark variants. In-
spired by ideas outside planning (Duchnowski, Pavlick, and
Koller 2025), we also run experiments on “costumed” vari-
ants of all domains from Silver et al. (2024) that are struc-
turally equivalent but phrased differently and therefore have
not been part of the training data of the LLMs. We define
new names for the actions, predicates and objects in the orig-
inal PDDL, in a way that is still semantically reasonable. For
example, in the costumed ferry domain, the ferry is a squirrel
that needs to jump between trees in order to move nuts.

Additionally, we follow previous work and create
anonymized benchmark variants without real-world related



semantics (e.g. Silver et al. 2024). In particular, we re-
place all names with generic names of the form “action”,
“predicate”, “object” and “type” and number these (e.g. “ac-
tion 1”). For these variants we slightly adapt the prompts for
the NL generation step to emphasize that all names from the
PDDL need to be included in the output in their exact form.

Set-up. We run our experiments using two non-reasoning
models, GPT-4o and Llama3.3-70B Instruct, and two
reasoning models, DeepSeek-V3.2 and Qwen3-30B-A3B
Thinking (see supplementary material for details). We use
the same prompts for all all models but remove instructions
to think for the reasoning models.

In all experiments, we select the generated program for
the final evaluation based on the best performance on the
debugging data. In case of ties, we select the one generated
at a later step. We also apply the same approach for select-
ing the pseudocode that is passed to the code generation. If
a program does not terminate within 45 seconds, it is inter-
rupted and a timeout feedback is generated.

For each domain and version of the pipeline, we conduct
three runs. We split the debugging tasks into three pairs and
use a different pair as the examples for the generation of the
strategy for each run. All six tasks are used for debugging.

When generating the initial programs, we provide the
LLM with one debugging task in Python format and a corre-
sponding plan as an example. If the LLM generated a correct
plan for any debugging task during the pseudocode valida-
tion, we select that task and plan as the example. Otherwise,
we show a plan generated by an optimal symbolic planner.

Evaluation. For running the Python programs on the eval-
uation tasks, we impose the same time limit of 45s as in
debugging. Our main evaluation metric is coverage, the per-
centage of evaluation tasks for which the Python program
generates a correct plan. We report both the average over all
runs and the coverage of the run with the highest coverage
on the evaluation data. As the Python program output can
depend on the ordering of objects and initial/goal facts in
the input, we run 4 random orderings and treat the output as
correct only if all runs succeed.

Our framework. We test our generalized planning frame-
work for two different combinations of the maximum num-
ber of initial programs (N ) and code debugging steps (KC).
For one experiment we set N = 3 and KC = 6, resulting in
a maximum of 21 generated programs. For the other experi-
ment, we set N = 5 and KC = 3, hence increasing the num-
ber of initial programs while keeping the maximum number
of generated programs similar (20). We refer to the two ver-
sions as F3-6 and F5-3. For both versions we set KS = 5.

Ablations. We conduct three ablation experiments to as-
sess the effect of our pipeline extensions. The base approach
for all ablation experiments is F3-6. We assess the effect of
generating multiple initial programs by setting N = 1 (-MC).
In order to test to what extent debugging at the strategy level
is beneficial we set KS to 0 (-SD). Lastly, we prompt the
LLM to revise the code directly based on the feedback, to
assess the effect of the reflection step (-CR).

Baselines. We compare the performance of our approach
to the framework by Silver et al. (2024) (Sil) and to a re-
implementation of their pipeline (Bas). For Bas we make
a number of smaller changes to the original pipeline for
a fairer comparison. First, we adapt the phrasing of the
prompts to be more similar to our prompts. We also sepa-
rate the three parts of the pipeline and use the output of the
previous step as part of the input for the next step, as done in
our main framework. To account for the fact that no PDDL is
available at code generation time, we provide the definition
of the example task and of the failed task in Python format.
The final program is selected based on the debugging data.

Symbolic planners. Our LLM-generated programs come
without any guarantees, and are quite different in nature to
symbolic planners providing guarantees through search, so a
direct comparison is not possible. To nevertheless provide a
bit of a measuring line, we run A⋆ with the LM-cut heuristic
(lm) (Helmert and Domshlak 2009) and GBFS with the FF
heuristic (ff) (Hoffmann and Nebel 2001), as baselines for
optimal and satisficing symbolic planning respectively. We
ran these planners on Intel Xeon E5-2687W processors with
limits of 30m and 8GB. We also report coverage for the same
45s limit applied to the execution of generalized plans.

Results
Improvements over baselines. Table 1 and Table 2 show
the percentage of solved tasks per domain for the best run
as well as averaged over all three runs for the non-reasoning
models and the reasoning models respectively. Comparing
the average of the best baseline (Sil, Bas) and our best ap-
proach (F3-6, F5-3), our approach improves over the base-
line by 23 percentage points when using GPT-4o, 20 points
when using Qwen Thinking, 14 using DeepSeek and 12 us-
ing Llama. Overall, the reasoning models perform better
than the non-reasoning models but even for them our ap-
proach outperforms the baselines. In particular, the config-
uration with the highest across-domain average is our F5-3
approach with DeepSeek.

Comparing the per-domain averages of F3-6 and F5-3, we
observe that none is consistently better than the other. As the
benefit of continuing to debug vs. generating a program from
scratch depends the type of mistake and the complexity to fix
it, it is likely that a good balance between both depends on
the specific domain and program.

For the ablations, we find that removing each of the three
ablated parts of the approach has a negative effect on some
of the domains. Overall, the ablation results illustrate that all
three of our contributions are needed to achieve high perfor-
mance across different domains and LLMs.

We also provide an overview of the distribution of the
types of errors encountered in the automatic evaluation for
each of the LLMs in the supplementary material.

Generalization power of our 100% policies. We man-
ually analyzed the 100% coverage programs generated by
our F5-3 configuration using GPT-4o (12 domains) and
DeepSeek (14 domains) relative to the respective instance
generators. In all these domains, the programs generalize be-
yond the evaluation dataset and indeed solve all tasks that



Domains
Avg coverage three runs Coverage best run

GPT-4o Llama GPT-4o Llama3.3
Sil Bas F5-3 F3-6 -MC -SD -CR Sil Bas F5-3 F3-6 -MC -SD -CR Sil Bas F5-3 F3-6 -MC -SD -CR Sil Bas F5-3 F3-6 -MC -SD -CR

Domains from Silver et al. (2024)
delivery 100 100 100 100 100 100 100 100 100 100 100 67 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
ferry 33 100 100 100 35 100 100 100 67 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
gripper 79 100 100 88 100 100 100 64 55 100 67 100 88 88 100 100 100 100 100 100 100 64 100 100 100 100 100 100
heavy 100 67 100 100 100 100 100 100 100 100 88 92 97 53 100 100 100 100 100 100 100 100 100 100 100 100 100 100
hiking 100 0 33 67 0 0 67 100 43 95 67 81 100 67 100 0 100 100 0 0 100 100 100 100 100 100 100 100
miconic 11 4 68 33 0 1 4 41 4 5 4 10 0 0 32 12 100 100 0 3 12 100 12 12 9 18 0 0
spanner 0 6 33 67 33 67 33 0 0 33 67 0 1 12 0 15 100 100 100 100 100 0 0 100 100 0 3 35

Additional Domains
beluga 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0
blocksw. 2 12 6 7 6 5 4 50 0 14 11 5 8 11 4 20 12 13 8 6 6 100 1 20 22 14 12 14
goldminer 6 0 4 11 2 3 2 3 0 0 1 0 2 0 14 0 6 24 6 6 6 5 0 0 4 0 5 0
grippers 100 33 100 100 71 100 100 71 100 100 100 100 100 100 100 100 100 100 100 100 100 93 100 100 100 100 100 100
logistics 2 45 100 94 94 77 74 7 12 42 46 60 21 16 6 100 100 100 100 100 100 14 19 94 100 83 26 41
minigrid 0 31 48 61 37 36 42 21 26 65 51 41 53 46 0 42 54 72 68 42 47 42 37 82 60 42 64 54
rovers 0 0 7 0 0 1 0 0 0 0 0 0 0 0 0 0 20 0 0 4 0 0 0 0 0 0 0 0
satellite 33 48 69 29 67 60 45 31 4 36 36 35 32 37 60 68 100 44 72 100 52 36 12 44 44 44 44 44
transport 0 0 33 67 0 0 0 0 0 60 26 19 59 33 0 0 100 100 0 0 0 0 0 89 79 57 100 100
visitall 70 80 80 100 33 78 51 20 15 60 52 55 88 47 100 100 100 100 100 100 100 35 20 81 100 100 100 91

Avg 37 37 58 60 40 49 48 42 31 54 48 45 50 42 48 50 76 74 56 57 60 53 41 66 66 56 56 58

Table 1: Percentage of solved tasks using non-reasoning LLMs for the original framework by Silver et al. (2024) (Sil) and the
re-implemented baseline (Bas) and our generalized planning approach with N = 3, KC = 6 (F3-6) and N = 5, KC = 3 (F5-3).
The three ablations -MC, -SD and -CR are based on F3-6. We report the average coverage over three runs and coverage of the best
run. For both, we show in bold the best generalized planning approach for each model.

Figure 7: Runtime of the best generalized plan by F5-3
(DeepSeek) (x-axis) and of ff (y-axis) for each commonly
solved task. Diagonal is plotted in red.

can be generated with the instance generators. In particular,
the programs generalize to tasks of arbitrary size. For ex-
ample, the programs for Ferry can solve tasks with arbitrary
numbers of cars and locations, provided that cars are initially
not on the ferry and the ferry location is not part of the goal
(which are exactly the restrictions inherent in the instance
generators). This shows that although LLMs fail to gener-
alize to larger task sizes and plan lengths when generating
plans directly (e.g. Valmeekam et al. 2025), their knowledge
from pretraining can be exploited to generate programs that
do generalize.

A full documentation of our manual program analysis is
in the supplementary material. Briefly summarized, the main

control structure of most of the analyzed programs is a loop
that loops over all goal facts (or objects part of the goal) and
that contains the code for generating the sub-plan required
to arrive at a state satisfying that goal fact (e.g. see first for-
loop in Figure 3). If the loops themselves correctly imple-
ment the sub-strategies and cover all relevant possible state
conditions (e.g., whether a truck is already at the package
location and if not) then solving tasks with a higher number
of objects that require longer plans comes down to simply
iterating through the loops more often.

Comparison to symbolic planners. As the rightmost
columns in Table 2 show, optimal planning becomes hard
for our evaluation tasks within the given time limits, and is
often outperformed by the Python programs. But satisficing
planning still reigns supreme in coverage, being beaten only
in the Spanner domain.

Looking beyond coverage however, the Python programs
have substantial advantages. As pointed out above, many of
the best programs generalize to the entire domain. Given the
polynomial runtime in input task size, the programs are thus
bound to eventually outscale any symbolic planner based on
search. More generally, program execution is most of the
time much faster than plan generation via search.

To give an assessment of this aspect in our benchmarks (in
many of which, state-of-the-art symbolic planners perform
quite well), Figure 7 compares times for the best Python pro-
gram (F5-3, DeepSeek) vs. the satisficing planner ff. Focus-
ing on tasks solved by both, program execution is consider-
ably faster for 97% of the tasks (note the exponential scaling
in Figure 7).



Domains
Avg coverage three runs Coverage best run Cov. symbolic

DeepSeek Qwen3 Thinking DeepSeek Qwen3 Thinking lm ff

Sil Bas F5-3 F3-6 Sil Bas F5-3 F3-6 -MC -SD -CR Sil Bas F5-3 F3-6 Sil Bas F5-3 F3-6 -MC -SD -CR 45s 30m 45s 30m

Domains from Silver et al. (2024)
delivery 100 100 67 100 70 100 100 70 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 0 100 100
ferry 100 100 100 100 67 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 31 43 100 100
gripper 67 88 100 100 43 64 43 64 64 76 60 100 100 100 100 64 64 64 64 64 100 64 15 40 100 100
heavy 67 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
hiking 33 86 100 86 76 27 44 33 33 0 33 100 100 100 100 100 29 100 100 100 0 100 100 100 100 100
miconic 41 71 100 83 46 21 41 41 89 11 9 100 100 100 100 100 50 100 100 100 12 12 56 62 100 100
spanner 33 100 100 100 15 67 100 100 100 100 100 100 100 100 100 44 100 100 100 100 100 100 15 41 15 59

Additional Domains
beluga 0 2 24 30 1 0 0 7 2 3 0 0 5 43 43 2 0 0 10 7 10 0 0 0 100 100
blocksworld 67 42 100 100 34 71 42 78 85 59 44 100 100 100 100 100 100 100 100 100 100 100 79 87 100 100
goldminer 66 73 67 85 1 3 28 37 34 27 8 100 100 100 92 1 8 55 65 64 64 14 89 96 99 100
grippers 91 100 80 100 98 98 100 100 98 100 91 100 100 100 100 100 100 100 100 100 100 100 22 27 100 100
logistics 0 88 88 88 4 15 94 85 67 94 94 1 100 100 100 6 21 100 100 100 100 100 38 45 100 100
minigrid 77 62 72 64 14 18 55 53 34 61 37 85 96 78 78 27 43 77 65 60 81 57 99 100 100 100
rovers 16 20 35 60 0 3 13 20 15 11 5 48 60 60 60 0 4 28 48 36 16 16 88 96 100 100
satellite 15 52 63 45 33 35 47 43 44 44 44 44 72 100 48 52 44 48 44 44 48 44 76 84 100 100
transport 100 0 67 67 33 0 33 91 67 41 33 100 0 100 100 100 0 100 100 100 100 100 15 26 100 100
visitall 83 81 82 82 32 30 77 65 74 70 52 100 100 100 100 51 50 100 100 100 100 54 82 89 99 100

Avg 56 68 79 82 39 44 60 64 65 59 54 81 84 93 89 62 54 81 82 81 72 68 53 61 95 98

Table 2: Percentage of solved tasks using reasoning models for the original framework by Silver et al. (2024) (Sil) and the
re-implemented baseline (Bas) and our generalized planning approach with N = 3, KC = 6 (F3-6) and N = 5, KC = 3 (F5-3).
The ablations -MC, -SD and -CR are based on F3-6. For both, we show in bold the best generalized planning approach for each
model. The symbolic baselines were run for the same time limit as the generalized plans (45s) and for 30m (lm and ff).

This runtime efficacy increase comes at a mild price in
plan quality. Comparing plan length on commonly solved
tasks, the plans generated by the Python programs are only
1.1 times longer on average than those generated by ff.

Cost of generating the programs. Focusing on F5-3 with
DeepSeek, the generation of a program for Heavy took the
least time, namely 664s on average, and for Goldminer the
most time, almost 5.5h on average. Note however, that we
used caching, and retrieving outputs for already processed
inputs, is faster than generating them the first time. This con-
cerns all parts of the pipeline that are shared between differ-
ent variants of the framework, e.g. the NL domain descrip-
tion is only generated once per domain in our experiments
and then retrieved from the cache for all other runs (with the
exception of Sil which uses different prompts).

In sum, almost 15M tokens (input + output) were pro-
cessed by DeepSeek and F5-3 for generating the Python pro-
grams across all domains. This corresponds to the negligible
cost of ca. 5.5 USD for the DeepSeek variant used.

Results on costumed and anonymized benchmark vari-
ants. Table 3 shows the results of our F5-3 approach ran
with GPT-4o on the anonymized and costumized variants for
the domains of Silver et al. (2024).

Regarding the anonymized variants, unsurprisingly (and
in line with previous work) we find that LLMs struggle, as
no world knowledge can be leveraged when names in a do-
main carry no information.

Regarding the costumed variants however, interestingly
we observe the performance of our LLM-generated pro-

Domain
Avg three runs Best run

original costume anonym original costume anonym

delivery 100 100 100 100 100 100
ferry 100 100 1 100 100 2
gripper 100 67 33 100 100 100
heavy 100 100 0 100 100 0
hiking 33 100 67 100 100 100
miconic 68 67 33 100 100 100
spanner 33 0 12 100 0 35

Avg 76 76 35 100 86 62

Table 3: Percentage of solved tasks for F5-3 with GPT-4o
on the original, costumed and anonymized versions of the
domains from Silver et al. (2024).

grams does not degrade, with the single exception of the
Spanner domain. This result indicates that the LLMs do not
only replicate solutions that have already been part of the
pretraining data, but are capable of actual reasoning over po-
tential strategies for a domain, as long as the domains have
a connection to real world semantics.

Conclusion
We show that generalized planning with LLMs can be made
substantially more effective through pseudocode strategy
refinement, code reflection and generating multiple code
candidates. Our approach generates Python programs that
achieve an average coverage of 82% across 17 domains.

In future work, it would be interesting to investigate if
and how knowledge about a domain can be exploited to cre-



ate a more effective set of debugging tasks and potentially
extend it automatically during the generation as needed. An-
other important direction, given the lack of intrinsic guaran-
tees and the fundamental limitation to polynomial-time pro-
grams, is the combination with symbolic search methods.

References
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic
Derivation of Memoryless Policies and Finite-State Con-
trollers Using Classical Planners. Proceedings of the Inter-
national Conference on Automated Planning and Schedul-
ing, 19(1): 34–41.
Corrêa, A. B.; Pereira, A. G.; and Seipp, J. 2025. The 2025
Planning Performance of Frontier Large Language Models.
arXiv:2511.09378.
Du, X.; Liu, M.; Wang, K.; Wang, H.; Liu, J.; Chen, Y.;
Feng, J.; Sha, C.; Peng, X.; and Lou, Y. 2024. Evaluat-
ing Large Language Models in Class-Level Code Genera-
tion. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ICSE ’24. New York,
NY, USA: Association for Computing Machinery. ISBN
9798400702174.
Duchnowski, A.; Pavlick, E.; and Koller, A. 2025. A Knap-
sack by Any Other Name: Presentation impacts LLM per-
formance on NP-hard problems. In Christodoulopoulos, C.;
Chakraborty, T.; Rose, C.; and Peng, V., eds., Findings of the
Association for Computational Linguistics: EMNLP 2025,
6628–6651. Suzhou, China: Association for Computational
Linguistics. ISBN 979-8-89176-335-7.
Eisenhut, J.; Schuler, X.; Fišer, D.; Höller, D.; Christakis,
M.; and Hoffmann, J. 2024. New Fuzzing Biases for Action
Policy Testing. Proceedings of the International Conference
on Automated Planning and Scheduling, 34(1): 162–167.
Haslum, P.; Lipovetzky, N.; Magazzeni, D.; and Muise, C.
2019. An Introduction to the Planning Domain Definition
Language. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers. ISBN
978-3-031-00456-8.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling, ICAPS. AAAI.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research, 14: 253–302.
Holtzman, A.; Buys, J.; Du, L.; Forbes, M.; and Choi, Y.
2020. The Curious Case of Neural Text Degeneration.
arXiv:1904.09751.
Howey, R.; Long, D.; and Fox, M. 2004. VAL: Automatic
Plan Validation, Continuous Effects and Mixed Initiative
Planning Using PDDL. In 16th IEEE International Confer-
ence on Tools with Artificial Intelligence (ICTAI 2004), 15-
17 November 2004, Boca Raton, FL, USA, 294–301. IEEE
Computer Society.
Jiménez, S.; Segovia-Aguas, J.; and Jonsson, A. 2019. A re-
view of generalized planning. The Knowledge Engineering
Review, 34: e5.

Kambhampati, S.; Valmeekam, K.; Guan, L.; Verma, M.;
Stechly, K.; Bhambri, S.; Saldyt, L. P.; and Murthy, A. B.
2024. Position: LLMs Can’t Plan, But Can Help Planning
in LLM-Modulo Frameworks. In Forty-first International
Conference on Machine Learning.
Kojima, T.; Gu, S. S.; Reid, M.; Matsuo, Y.; and Iwasawa,
Y. 2022. Large Language Models are Zero-Shot Reason-
ers. In Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave,
D.; Cho, K.; and Oh, A., eds., Advances in Neural Informa-
tion Processing Systems, volume 35, 22199–22213. Curran
Associates, Inc.
Madaan, A.; Tandon, N.; Gupta, P.; Hallinan, S.; Gao, L.;
Wiegreffe, S.; Alon, U.; Dziri, N.; Prabhumoye, S.; Yang,
Y.; Gupta, S.; Majumder, B. P.; Hermann, K.; Welleck, S.;
Yazdanbakhsh, A.; and Clark, P. 2023. Self-Refine: Itera-
tive Refinement with Self-Feedback. In Oh, A.; Naumann,
T.; Globerson, A.; Saenko, K.; Hardt, M.; and Levine, S.,
eds., Advances in Neural Information Processing Systems,
volume 36, 46534–46594. Curran Associates, Inc.
McDermott, D. M. 2000. The 1998 AI planning systems
competition. AI magazine, 21(2): 35–35.
Seipp, J.; Torralba, Á.; and Hoffmann, J. 2022. PDDL Gen-
erators. https://doi.org/10.5281/zenodo.6382173.
Shinn, N.; Cassano, F.; Gopinath, A.; Narasimhan, K.; and
Yao, S. 2023. Reflexion: language agents with verbal re-
inforcement learning. In Oh, A.; Naumann, T.; Globerson,
A.; Saenko, K.; Hardt, M.; and Levine, S., eds., Advances in
Neural Information Processing Systems, volume 36, 8634–
8652. Curran Associates, Inc.
Silver, T.; Dan, S.; Srinivas, K.; Tenenbaum, J. B.; Kael-
bling, L.; and Katz, M. 2024. Generalized Planning in
PDDL Domains with Pretrained Large Language Models.
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 38(18): 20256–20264.
Silver, T.; Hariprasad, V.; Shuttleworth, R. S.; Kumar, N.;
Lozano-Pérez, T.; and Kaelbling, L. P. 2022. PDDL Plan-
ning with Pretrained Large Language Models. In NeurIPS
2022 Foundation Models for Decision Making Workshop.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2011. A
new representation and associated algorithms for general-
ized planning. Artif. Intell., 175(2): 615–647.
Stechly, K.; Valmeekam, K.; and Kambhampati, S. 2025. On
the self-verification limitations of large language models on
reasoning and planning tasks. In The Thirteenth Interna-
tional Conference on Learning Representations.
Stein, K.; Fišer, D.; Hoffmann, J.; and Koller, A. 2025. Au-
tomating the Generation of Prompts for LLM-based Action
Choice in PDDL Planning. In Proceedings of the 35th Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’25).
Tang, H.; Hu, K.; Zhou, J. P.; Zhong, S.; Zheng, W.-L.;
Si, X.; and Ellis, K. 2024. Code Repair with LLMs gives
an Exploration-Exploitation Tradeoff. In Globerson, A.;
Mackey, L.; Belgrave, D.; Fan, A.; Paquet, U.; Tomczak, J.;
and Zhang, C., eds., Advances in Neural Information Pro-
cessing Systems, volume 37, 117954–117996. Curran Asso-
ciates, Inc.



Valmeekam, K.; Stechly, K.; Gundawar, A.; and Kambham-
pati, S. 2025. A Systematic Evaluation of the Planning and
Scheduling Abilities of the Reasoning Model o1. Transac-
tions on Machine Learning Research.
Wang, E.; Cassano, F.; Wu, C.; Bai, Y.; Song, W.; Nath, V.;
Han, Z.; Hendryx, S.; Yue, S.; and Zhang, H. 2024. Plan-
ning In Natural Language Improves LLM Search For Code
Generation. arXiv:2409.03733.
Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; ichter, b.;
Xia, F.; Chi, E.; Le, Q. V.; and Zhou, D. 2022. Chain-of-
Thought Prompting Elicits Reasoning in Large Language
Models. In Koyejo, S.; Mohamed, S.; Agarwal, A.; Bel-
grave, D.; Cho, K.; and Oh, A., eds., Advances in Neural
Information Processing Systems, volume 35, 24824–24837.
Curran Associates, Inc.

Model Parameters
We run our experiments with the gpt-4o-2024-08-061

and LLama-3.3-70B-Instruct2 non-reasoning models and
the DeepSeek-V3.2-Exp3 and Qwen3-30B-A3B-Thinking-
25074 reasoning models. For GPT and DeepSeek we use the
OpenAI and DeepSeek APIs respectively. The experiments
with Llama and Qwen were run on two GPUs of type Tesla
V100-PCIE-32GB.

The evaluation of the Python programs was run on the
same processors as the symbolic planners, i.e. on Intel Xeon
E5-2687W processors.

Parameter GPT-4o DeepSeek Llama Qwen
context window 128000 128000 128000 262144
temperature 0 NA 0.7 0.6
max tokens 16384 32000 20000 81920
top p NA NA 0.8 0.95
top k NA NA 20 20
presence pen. NA NA 0 0
seed 1 NA NA NA

Table 4: Parameters of the LLMs for the generation.

Additional Results.
Runtimes and Plan Lengths We compare the time re-
quired for generating a plan and the length of the generated
plans by ff and by F5-3 for all commonly solved tasks. We
report the average over all per-task ratios, computed by di-
viding the runtime / plan length for F5-3 by the correspond-
ing value for ff. Additionally, we report the percentage of
tasks for which the Python program is faster than ff and the
percentage of tasks for which the Python program generates
shorter plans.

Table 5 shows the result for the comparison to F5-3 (best
run) with each of the four tested LLMs. All four LLMs gen-
erate Python programs that are faster for a large majority of
tasks. The programs generated by DeepSeek are the fastest -
relative to ff- requiring only 0.36 time the time of ff on av-
erage while the programs generated by Llama have runtimes
closer to ff.

Focusing on the plan length, we observe that ff generates
plans that are on average between 1.1 (DeepSeek) and 1.57
(GPT) times shorter.

Model Runtime Plan length
Avg Ratio F5-3 faster Avg Ratio F5-3 shorter

GPT-4o 0.42 96% 1.57 32%
DeepSeek 0.36 97% 1.10 51%
Llama 0.89 88% 1.34 37%
Qwen 0.43 96% 1.29 46%

Table 5: Comparison of the runtime and generated plan
length for the best Python program generated using the F5-3
configuration and ff on commonly solved tasks.

1https://platform.openai.com/docs/models/gpt-4o
2https://huggingface.co/nvidia/Llama-3.3-70B-Instruct-FP8
3https://api-docs.deepseek.com/news/news250929
4https://huggingface.co/Qwen/Qwen3-30B-A3B-Thinking-

2507



Error distributions. Table 6 provides an overview of the
distribution of error types. Considering all three runs for
each configuration, we report the number of runs where the
generation itself stopped with an error. All these errors were
due to reaching the maximum number of output tokens or
the maximum number of tokens the model can process, i.e.
the context window limit.

For all runs that finished without an error, we consider all
final programs that resulted in an error for at least one eval-
uation task and computed the percentage of runs for which
each error type occurred for at least one task.

Model Python Timeout Invalid Goal not Incompl.
except. actions satisfied run

GPT-4o 23% 14% 37% 27% 0
DeepSeek 18% 15% 35% 32% 11
Llama 13% 15% 35% 32% 3
Qwen 13% 12% 51% 24% 11

Table 6: The number of runs (out of all configurations and
domains) for which the generation of the programs stopped
with and error (Incompl. run) and the percentage of runs
where one of the four error types occurred for at least one
task out of all runs with any error.

Datasets
Sources. For our experiments, we focus on domains that
have previously been used in research on LLMs in the con-
text of classical planning. In particular, we use the domains
from Silver et al. (2024)’s generalized planning experiments
and Stein et al. (2025)’s LLM action-choice experiments.
Table 7 shows for each of the domains the sources of the
tasks we include in our experiments. All tasks included in
our experiments are solvable.

Instance generators. The right column of Table 7 shows
the origin of the instance generators that we used to generate
additional tasks for some of the domains, and that we used
for the manual evaluation of the generalization power of our
generalized plans. For the domains from Silver et al. (2024),
we mostly focused on their generators5 and for all other do-
mains, except Minigrid, we used the generators from the
PDDL-Generators repository6 (Seipp, Torralba, and Hoff-
mann 2022).

For Blocksworld, we renamed two of the predicates in the
newly generated problem files to match the domain file used
by Stein et al. (2025) (“on-table” to “ontable” and “arm-
empty” to “handempty”). Additionally, we modified all do-
mains and tasks with non-uniform action costs or functions.

Debugging and eval tasks. For the each domain, we ran-
domly select 6 tasks that are small with respect to the sized
of the evaluation tasks as debugging tasks. In particular, we
only consider tasks for which the number of objects and op-
timal plan length of each debugging task is among the 16
smallest values of object number and plan length in the over-
all dataset. One exception is the Beluga domain for which

5https://github.com/tomsilver/llm-genplan
6https://github.com/AI-Planning/pddl-generators

Domain Source of tasks Instance Generators
delivery Silver et al. (2024) Silver et al. (2024)

ferry
Silver et al. (2024) Silver et al. (2024)
Stein et al. (2025) Seipp, Torralba, and Hoffmann (2022)
Generated by us

gripper Silver et al. (2024) Silver et al. (2024)
IPC gripper98 Seipp, Torralba, and Hoffmann (2022)

heavy Silver et al. (2024) Silver et al. (2024)
hiking Silver et al. (2024) Silver et al. (2024)
miconic Silver et al. (2024) Silver et al. (2024)
spanner Silver et al. (2024) Silver et al. (2024)

beluga Eisenhut et al. (2024) Eisenhut et al. (2024)

blocks.
Stein et al. (2025)

Seipp, Torralba, and Hoffmann (2022)IPC blocks00
Generated by us

goldminer Stein et al. (2025) Seipp, Torralba, and Hoffmann (2022)

grippers Stein et al. (2025) Seipp, Torralba, and Hoffmann (2022)
Generated by us

logistics
Stein et al. (2025)

Seipp, Torralba, and Hoffmann (2022)IPC logistics98
IPC logistics00

minigrid https://github.com/ https://github.com/bonetblai/mini-grid/
bonetblai/mini-grid/

rovers Stein et al. (2025) Seipp, Torralba, and Hoffmann (2022)
Generated by us

satellite Stein et al. (2025) Seipp, Torralba, and Hoffmann (2022)
Generated by us

transport
IPC transport08

Seipp, Torralba, and Hoffmann (2022)IPC transport11
IPC transport14

visitall

Stein et al. (2025)

Seipp, Torralba, and Hoffmann (2022)IPC visitall11
IPC visitall14
Generated by us

Table 7: The origin of all tasks that we used for our experi-
ments and the instance generators that we used for the man-
ual evaluation and for generating additional data for some of
the domains.

the optimal planner (lm) did not solve any task. We there-
fore based the debugging task selection on the lengths of the
plans generated by the satisficing planner (ff).

Table 8 gives an overview of the sizes of all tasks from
our experiments. It shows the average length of the plans
generated by the optimal planner and the satisficing planner
for the debugging and evaluation tasks, as well as the aver-
age number of objects for both sets of tasks. Additionally,
we include the minimum and maximum values for the plan
lengths and number of objects of the evaluation tasks. The
overview shows that the tasks on which we evaluate our gen-
erate programs include tasks that are much larger than the
ones used during the generation of the generalized plans (i.e.
as examples and for debugging). Figure 8 illustrates the dis-
tribution of the number of objects per debugging and evalu-
ation task for the Miconic and Logistics domains.

Costumed variants. Duchnowski, Pavlick, and Koller
(2025) showed for NP-hard problems that different ways of
phrasing the same mathematical problem impact the perfor-
mance of LLMs. We adapt their idea of generating costumed



domain N
Optimal Plan Length (lm) Satisficing Plan Length (ff) Number of objects

debug eval debug eval debug eval
avg avg min max avg avg min max avg avg min max

Domains from Silver et al. (2024)
delivery 30 10 None None None 12 96 79 115 10 62 50 73
ferry 275 7 28 4 56 7 104 4 301 8 45 5 116
gripper 53 9 35 15 52 10 77 18 165 28 53 10 81
heavy 34 6 128 4 209 6 128 4 209 6 128 4 209
hiking 28 7 13 2 26 7 13 2 26 97 108 80 121
miconic 34 23 27 11 66 25 63 12 186 20 53 9 104
spanner 34 16 33 10 52 16 37 10 52 19 47 13 64

Additional Domains
beluga 61 None None None None 12 48 10 159 17 27 15 34
blocksworld 191 7 18 0 42 9 38 0 218 4 9 3 20
goldminer 115 10 16 5 32 11 42 5 370 7 17 4 49
grippers 131 5 18 4 54 5 126 4 340 11 63 9 144
logistics 178 7 17 0 48 7 59 0 361 12 54 9 438
minigrid 74 6 12 0 83 6 13 0 122 25 34 10 96
rovers 25 8 14 6 36 8 15 8 37 12 16 11 28
satellite 25 6 10 6 23 6 17 6 79 8 31 9 110
transport 53 10 22 16 36 10 55 16 152 14 37 18 75
visitall 193 5 15 0 50 5 87 0 2308 6 31 1 324

Table 8: The number of tasks for each domain (N), and the average (avg), minimum (min) and maximum (max) values of the
plans derived by the lm and ff symbolic planners and number of objects for the evaluation tasks (eval) as well as the average
values of the debugging tasks (debug). Tasks for which the symbolic planner did not find a plan were left out in the computation
of the average plan length values.

versions to planning domains. For each actions, predicate,
object and type name we manually create a new replace-
ment name, hence generating a new variant of a domain that
preserves the exact logical structure of the original domain.
We provide a brief description of the original and costumed
versions.

Ferry. Cars must be transported between different loca-
tions using a ferry that can carry only one car at a time.

Costumed ferry. A squirrel needs to jump between differ-
ent trees in order to move nuts to the goal tree. It can only
carry one nut in its paws.

Delivery. The goal is delivery newspapers to different lo-
cations. All newspapers need to be picked up at the home
based and be carried to the locations that want a newspaper.

Costumed delivery. The goal is to deliver seedlings to
places that are planning to create a garden. All seedlings
need to be collected at the nursery and driven to the target
location where the seedling is planted.

Gripper. A robot needs to carry balls between rooms. The
robot has two grippers, each can carry one ball.

Costumed gripper. The goal is to sail between different
hideouts in order to find chests at their initial hideout and
hide them at the goal hideout. The boat has space for two
chests, one at the port and one at the starboard side.

Heavy. Objects need to be placed on top of each other in a
box such that the heaviest item is the bottom-most one and
no object is placed on an object that is lighter than itself.

Costumed heavy. A number of tasks needs to be sched-
uled such that the easiest task is scheduled first and no task
is scheduled after a more difficult task.

Hiking. The goal is to navigate from an initial location in
a 2D grid to a goal location. Some locations are water or
a hill. Moving to a hill location requires a climbing action
instead of walking and it is not possible to move to locations
with water. There is one defined trail leading from the initial
to the goal location but other paths are possible.

Costumed hiking. The goal is to navigate from an initial
location in a 2D grid to a goal location. Some locations are
colored white, black or red. Moving to the white locations
requires a jump actions instead of moving and it is not pos-
sible to move to a black location. All red locations form a
path from the initial to the goal location.

Miconic. The goal is to transport passengers between dif-
ferent floors in a building. Passengers can be picked up at
their initial floor and dropped off at another floor. There can
be several buildings and passengers can only move within
the same building.

Costumed miconic. The goal is submit a process when a
machine is in a specific mode. There can be several machines
and each machine has different modes that are ordered. It
is possible to switch the mode down to lower modes or up
to higher modes. Each process requires a specific mode in
order to be set up before the mode can be switched to the
goal mode for submitting the process.

Spanner. An agent must tighten all nuts using spanners.
Each spanner can only be used once to tighten a nut. All



(a) Miconic domain

(b) Logistics domain

Figure 8: Number debugging tasks (blue) and number of evaluation tasks (orange) with a specific number of objects (x-axis).

locations are connected in the form of a one-way path and
all nuts are at the last location. The agent needs to move
from the its start location to the last location and pick up the
spanners needed for tightening the nuts along the way.

Costumed spanner. A squirrel must feed its babies with
nuts. There is a number of tree hollows along a tree that
contain nuts and the squirrel can only move from the bottom
of the tree to the top of the tree where the babies are located.
It needs to climb upt the tree and pick up the nuts needed for
feeding each baby one nut.

Feedback Types for Debugging
Code debugging. For the debugging of the generated
Python programs, the LLM is provided feedback about the
outcome of running the program on the debugging task. In
particular, we provide feedback on one of the tasks for which
the program did not return any output or an incorrect output.
For our approach (but not for the baseline) we also include
the tasks for which the program returned the correct output
together with the actual outputs. Figure 9a and 9b show the
templates used for creating the feedback messages if at least
one task was solved by the program and if none was solved
respectively.

We provide the information about the failed task (and the
solved ones if available) in Python format. If the program
returned an incorrect output, this output is included in the

feedback prompt (part between the dashed lines). The ac-
tual feedback message depends on the type of error that oc-
curred.

Table 9 shows the feedback messages generated in our
pipeline for the different types of errors. Following Silver
et al. (2024) we differentiate between timeouts (1), Python
exceptions (2), an output of an invalid type (3) and outputs
that are not a valid plan for the task (4). We make the feed-
back message for outputs that are not valid plans for the
input task more informative by incorporating the feedback
generator from Stein et al. (2025) (see Table 9, 4.1 - 4.6).
This approach allows us to give more precise feedback, e.g.
for the wrong number of action parameters, or parameters
not matching objects defined by the specific task.

Pseudocode debugging. Figure 9c shows the template
used for creating the feedback prompt for the debugging of
the pseudocode strategy. The prompt does not include the
definition of the task for which a wrong plan was generated
because the NL task description is already included in the
context of the LLM. The different types of errors considered
for the pseudocode debugging and the corresponding feed-
back messages are the same as 4.1 - 4.6 in Table 9.

Manual Evaluation of Generalization Power
We manually evaluated the generalization power of all gen-
eralized plans generated by F5-3 using GPT-4o and F5-3 us-



The code you provided me solved the following tasks correctly:

objects = {…}
init = {…}
goal = {…}
The code returned the correct output:
[…]

The code failed on the following task:
objects = {…}
init = {…}
goal = {…}

The code returned the following output (comments added for readibility)
[

{{ ACTION 0 }},            # step 0
{{ ACTION 1 }},            # step 1
…

]

{{ FEEDBACK }}

{{ INSTRUCTIONS }}

(a)

The code you provided me did not solve any of the 
tested tasks.

The code failed on the following task:
objects = {…}
init = {…}
goal = {…}

The code returned the following output (comments 
added for readibility)
[

{{ ACTION 0 }},            # step 0
{{ ACTION 1 }},            # step 1
…

]

{{ FEEDBACK }}

{{ INSTRUCTIONS }}

(b)

This plan is incorrect because of the following issues:

The following plan was created based on the strategy:

{{ ACTION 0 }}
{{ ACTION 1 }}

…

{{ FEEDBACK }}

{{ INSTRUCTIONS }}

(c)

Figure 9: 9a and 9b show the templates for the reflection prompts provided during the code debugging step when some of the
debugging tasks were solved by the program (9a) and none were solved (9b). The part between the dashed lines is only included
if running the program on the task did actually generate an output. 9c shows the template for the reflection prompt provided
during the debugging of the pseudocode strategy.

ing DeepSeek-R1 that achieved 100% coverage on our eval-
uation datasets. We find that for all 12 domains where F5-3
with GPT-4o generated at least one program that solved all
evaluation tasks, that program generalizes to all tasks that
can be generated with the respective instance generators.
The some holds for the 14 domains for which F5-3 gen-
erated at least one program that solved all evaluation tasks
when using DeepSeek-R1.

Here, we provide more details about the results of the
manual analysis. We report the details for the programs gen-
erated by GPT-4o but the observations for the programs gen-
erated by DeepSeek-R1 are similar. For each domain, we
provide a summary of the types of tasks generated by the
instance generator and briefly describe the most relevant
parts of the evaluated Python program. If several programs
achieved 100% coverage, we evaluated all of them but pro-
vide a description only for one of them. All evaluated pro-
grams are included in the supplementary material. We report
whether the evaluated programs can generalize to all tasks
generated by the instance generator. Additionally, we pro-
vide a brief overview of the generalization beyond the tasks
generated by the specific instance generators. For both, we
only consider solvable tasks.

Delivery

Instance generator. The generator creates tasks with a
specified number of locations. “location-0” is always the
home base and always the start location. Newspapers must
be picked up in the home base, moved to a location that
wants a paper and then be delivered. The locations that want
a newspaper are randomly distributed over the locations. The
goal specifies that each location that wants a paper should be
satisfied in the end.

Program description (seed 1). First, the home base, all
safe locations, all locations that want newspapers and all
unpacked newspapers are determined. Afterwards, the code
loops over all locations that want a newspaper and adds all
actions required for delivering a newspaper from the home
base to that location to the solution.

Generalization. All three evaluated programs solve every
task generated by the instance generator. They generalize to
tasks with an arbitrary number of locations, newspapers and
locations that want packages.

Generalization beyond generator. If the start location is
different from the home base, two of the programs will not
generate correct plans as they set the start location to the
home base. Additionally, all three programs will fail if the
goal specifies the final position of the deliverer. However, all
programs generalize to tasks where the home base, i.e. the
location of the newspapers, is different from “location-0”.

Ferry
Instance generator. For all generated tasks, there is a
ferry, a number of cars, and a number of possible locations.
The cars are randomly distributed across locations. The ferry
is initially empty. The goal specifies for each car a goal lo-
cation, which can be identical to the initial location.

Program description (seed 1). First, all cars and the ini-
tial location of the ferry are determined. Then the program
loops over all cars and checks whether the current and goal
location are the same. If not, all actions for transporting the
car to the goal location are added to the solution.

Generalization. All three evaluated programs solve every
task generated by the instance generator. They generalize to
tasks with an arbitrary number of cars and locations.



Feedback Messages Error Type

1 The code was interrupted because it did not terminate within the time
limit ({{ TIME LIMIT }} seconds). This is likely caused by an infinite
loop. Please check the loops again.

Execution of the program timed out.

2 The code raised the following exception:
{{ TRACEBACK without file paths }}

Execution of the program raised a
Python exception.

3 The code returned {{ OUTPUT }} which is not a list of actions. Please
make sure that your code returns a list of actions, i.e. of type List[str].

The returned output does not have the
correct type.

4.1 The action {{ ACTION X }} at step {{ X }} is not executable because
{{ STRING }} is not an available object in this task.

The returned plan contains parameters
that do not match objects in this task.

4.2 The action {{ ACTIONX }} at step {{ X }} is not executable because
{{ ACTIONX }} does not match any possible actions.

The returned plan contains actions that
are not part of the domain.

4.3 The action {{ ACTIONX }} at step {{ X }} is not executable because
{{ ACTIONX }} requires exactly {{ CORRECT NUMBER PARAM-
ETERS }} objects as arguments but {{ INCORRECT NUMBER PA-
RAMETERS }} were given.

The returned plan contains actions with
wrong number of parameters.

4.4 The action {{ ACTIONX }} at step {{ X }} is not executable because
the preconditions of the action are not satisfied:
At that specific step
− it is not the case that {{ PRECONDITION }}

The returned plan contains actions
with unsatisfied preconditions which are
non-static predicates, i.e. there are ac-
tions that can make the precondition
true.

4.5 The action {{ ACTIONX }} at step {{ X }} is not executable because
the preconditions of the action are not satisfied:
In this task instance
− it is not the case that {{ PRECONDITION }}

The returned plan contains actions
with unsatisfied preconditions which are
static predicates, i.e. there is no action
that can make this precondition true.

4.6 The generated plan does not reach the goal:
The following needs to be false but is true after executing all actions:
{{ NOT SATISFIED NEGATIVE GOAL FACTS }}
The following needs to be true but is false after executing all actions:
{{ NOT SATISFIED POSITIVE GOAL FACTS }}

The returned plans does only contain
applicable actions but not all goal facts
are satisfied in the end.

Table 9: The feedback messages generated for the different types of errors.

Generalization beyond generator. The programs cannot
generalize to tasks where a car is initially already on the
ferry. Additionally, the programs will fail on tasks where the
goal specifies a target position of the ferry or if a car needs
to be on the ferry.

Gripper
Instance generator. The instance generator generates ini-
tial states where the balls are randomly distributed over all
rooms. The robot always starts in “room-0” and has two
grippers that are initially free. The generated goals specify
for some of the balls one room as the goal location, i.e. the
goal is always to transport some, but not necessarily all, balls
to the goal room.

Program description (seed 1). First, the initial location
of the robot is determined and afterwards the program loops
over the goal input set and checks for goal facts starting wit
“at”. For each of those, it checks for the current location,
moves the robot there, frees up a gripper and continues with
the remaining actions required for moving the ball to the
goal location.

Generalization. All three evaluated programs solve every
task generated by the instance generator. They generalize to
tasks with an arbitrary number of balls, rooms and goal lo-
cations.

Generalization beyond generator. All three programs
cannot generalize to tasks where the goal specifies a target
location for the robot. Additionally, they do not generalize
to tasks where balls are already being carried in the initial
state.

Heavy
Instance generator. For all generated tasks, the box is ini-
tially empty and all objects are unpacked. Additionally, the
initial state fully defines the heavier relation between all ob-
jects, i.e. if there are n objects, then the heaviest object is
heavier than n − 1 objects, the second heaviest is heavier
than n−2, and so on. The goal is that every object is packed
in the box.

Program description. All three programs organize the
objects into a list, sorted in descending order based on the



frequency with which each object is heavier than another
object. To generate the plan, the objects are stacked on top
of each other in exactly that order.

Generalization. All three evaluated programs solve every
task generated by the instance generator. They generalize to
tasks with an arbitrary number of objects.

Generalization beyond generator. All programs pack all
available objects into the box. If the goal state specifies that
some objects should not be packed the programs will not be
able to generalize valid plans.

Hiking
Instance generator. The instance generators generate
tasks that are grids where some cells are of type dirt, water or
hill. In the initial state, these types are randomly distributed
over the cells and a trail from the initial start position to the
target position is generated, consisting of cells which are not
of type water. The goal is to reach the target position. This
can be achieved by simply following the trail, or finding an-
other path through the grid.

Program description. First, the start and target position
are determined. Afterwards, the program loops over all facts
of the initial state to find the location that is adjacent to the
current one and on the trail. If that location is a hill, the ac-
tion for climbing to the location is added to the solution,
otherwise the action for walking is added. This process is
continued until the current location equals the goal location.

Generalization. The evaluated program solves every task
generated by the instance generator. It generalizes to tasks
with an arbitrary grid size, as long as there exists a trail be-
tween the initial and target position.

Generalization beyond generator. If the trail is inter-
rupted, or the initial or target position are not part of the
trail, then the program will fail.

Miconic
Instance generator. The generator generates tasks with a
specified number of buildings. Every building has the same
number of floors and passengers. The passengers are then
randomly distributed across the floors of a building. Further-
more, every building has one lift which is initially on a ran-
dom floor. The goal is to bring all passengers from their ini-
tial floor to their destination floor within the same building
using the lifts.

Program description (seed 2). First, the position of the
lifts is determined, as well as the connections between the
floors, i.e. which floors are in the same building, and the
current and destination floor for each passenger. The pro-
gram then loops over all passengers and their initial location,
moves the lift that is in the same building to the passenger
and adds all remaining actions for moving the passenger to
the destination floor.

Generalization. All three evaluated programs solve every
task generated by the instance generator. They generalize to
tasks with an arbitrary number of buildings, passengers and
floors.

Generalization beyond generator. If the goal specifies a
floor as target location for any lift, then the all three pro-
grams will fail. Additionally, if the names of the floors do not
follow the naming scheme of FLOOR−BUILDING (e.g. f1-
b0) the programs cannot correctly determine anymore which
floors belong to the same building.

Spanner
Instance generator. The instance generator generates
tasks with a specified number of locations, and two special
locations, the shed and the gate. In the initial state, a man is
at the shed and a number of loose nuts is at the gate. An arbi-
trary number of spanners is distributed across the locations
and all locations are connected such that they form a one-
way path from the shed to the gate. The goal is to tighten all
loose nuts.

Program description. First, a direct path from the gate to
the shed is determined using a breadth-first search approach.
Then the man is moved from location to location along this
path. If there are spanners at an location they are all picked
up. After arriving at the gate, the program loops over the
loose nuts and selects one spanner after the other to tighten
each nut.

Generalization. The evaluated program solves every task
generated by the instance generator. It generalizes to tasks
with an arbitrary number of nuts, locations and spanners.

Generalization beyond generator. The program will fail
if the nuts are not only at the gate location or if the goal spec-
ifies a target location of the man. Additionally, the program
would fail if the connections between locations would allow
moving in more than one direction, and the man would need
to move between locations in a way different from a direct
path between shed and gate.

Grippers
Instance generator. The instance generator generates ini-
tial states where the robots and balls are randomly dis-
tributed over all rooms, and all robots have two grippers that
are initially free. The generated goals specify for each ball
one room as the goal location, i.e. the goal is always to trans-
port each ball, that is not already at its goal location, to the
goal room. In contrast to Gripper above, there can be several
robots.

Program description (seed 1). First, all robots and ob-
jects (i.e. balls) are determined. The program then loops over
all facts in the goal input set and checks for goal facts start-
ing with “at”. For each of them, it checks whether the initial
location of the specified ball is identical to the goal location.
If not, it selects a robot, moves it to the initial location of
the ball and frees up a gripper if necessary, and continues
with the remaining actions required for moving the ball to
the goal room.

Generalization. All three evaluated programs solve every
task generated by the instance generator. They generalize to
tasks with an arbitrary number of balls, rooms, and robots.



Generalization beyond generator. All three programs
cannot generalize to tasks where the goal specifies a target
location for any robot. Additionally, they do not generalize
to tasks where balls are already being carried in the initial
state.

Logistics
Instance generator. In all initial states generated by the
instance generator, all cities have the same number of loca-
tions and each city has one airport. A specified number of
airplanes are randomly distributed across all airports. Each
task also includes a specified number of trucks, with the only
condition that there are at least as many trucks as cities.
There can be multiple trucks and airplanes in the same lo-
cation. A specified number of packages is distributed over
all possible locations. The goal specifies for each package a
goal location which can be identical to the initial location.

Program description (seed 2). First, the locations of all
trucks and a randomly selected airplane are determined. Af-
terwards, the program loops over all facts in the goal input
set and identifies all goal facts that are about the location of
packages. For each of them, it checks whether the current
location and goal location are in the same city or not. For
both cases, the required vehicles and steps for moving the
package from the current location to the goal are then deter-
mined.

Generalization. All three evaluated programs solve every
task generated by the instance generator. They generalize to
tasks with an arbitrary number of vehicles, cities, locations,
and packages.

Generalization beyond generator. All three programs
cannot generalize to tasks where the location of a vehicle
is part of the goal or where the target location of a package
is inside a vehicle. If some packages are initially in a vehicle
the generalized plans will fail as well.

Satellite
Instance generator. The initial state of the tasks generated
defines which instruments a satellite has on board and the
modes the instruments support. Furthermore, it gives the cal-
ibration targets for the instruments. Additionally, all satel-
lites have “power avail” which is needed to switch on in-
struments, and satellites are pointing in some direction. The
goal is to take images of some observations and, in some
instances, to additionally point the satellite to a specific di-
rection (target or observation).

Program description. The program first loops over all
facts in the goal input set and checks for goals that are about
taking images. It then determines the required mode, instru-
ment, satellite and calibration target and adds all steps taking
the picture and turning off the instruments afterwards. After
taking care of all pictures, the code loops over all goal facts
that are about pointing in some direction and adds the ac-
tions required for turning the satellites accordingly.

Generalization. The evaluated program solves every task
generated by the instance generator. It generalizes to tasks
with an arbitrary number of satellites, modes, targets, obser-
vations and maximum number of instruments per satellite.

Generalization beyond generator. If in the initial state,
there is no “power avail” for some satellites, i.e. an instru-
ment has “power on” from the beginning, the program might
fail depending on whether that specific instrument is used
first or not. The order in which the instruments are used de-
pends on the order in which the program iterates over an
(unordered) set.

Transport
Instance generator. Each task generated by the instance
generator consists of a specified number of locations, vehi-
cles (trucks), packages, and vehicle capacity. Initially, pack-
ages and trucks are distributed across the available locations
and trucks are assigned a capacity of at least 2. Additionally,
there exist roads between locations. The goal is to bring ev-
ery package to its goal location.

Program description. First, all goal locations of packages
are determined. The program then loops over all packages
and their initial locations, checks for a vehicle with capacity
that is not equal to “capacity-0” and finds a path from the
location of the vehicle to the package using a breadth-first
search based approach. Then the vehicle is move there, the
package is picked-up, the capacity is updated and the path
for getting to the goal location is determined in the same
way. The package is dropped at the goal location, the capac-
ity is updated and the loop continues with the next package.

Generalization. The evaluated program solves every task
generated by the instance generator. It generalizes to tasks
with any number of trucks, packages, locations, cities, roads,
and capacity numbers.

Generalization beyond generator. Similar to Logistics,
the program cannot generalize to tasks where the location of
a vehicle is part of the goal or where the target location of
a package is inside a vehicle. Additionally, if a package is
initially already in a truck the program will fail as well.

Visitall
Instance generator. The generator creates tasks consist-
ing of a grid of some size n x m. The initial state consists
of the random location of the robot and the connections be-
tween adjacent locations. It is possible to define unavailable
locations, i.e. locations for which no connections to other
locations in the grid are defined. Depending on the ratio of
cells in the goal state, the goal is to reach either all locations
or a random subset of all locations.

Program description. First, the initial location of the
robot and all connections between locations are determined,
as well as all already visited and not yet visited locations.
The program then loops over all locations adjacent to the
current location to find a not yet visited one. If one is found,
the robot moves there. Otherwise, the program backtracks to



the last visited location that has still unvisited adjacent loca-
tions (and moves the robot there), and continues from there.

Generalization. The evaluated program solves every task
generated by the instance generator. It generalizes to tasks
with an arbitrarily large grid, any number of unavailable lo-
cations, and any ratio of locations in the goal state.

Generalization beyond generator. The program would
fail only for tasks where the goal specifies a specific target
position of the robot.



Example Generalized Plans
Generalized Plan for Gripper (DeepSeek, F5-3)
1 from typing import List, Tuple, Set

2
3 def generate solution(objects: Set[str], init: Set[Tuple], goal: Set[Tuple]) −> List[str]:

4 solution = []

5
6 # Extract initial state information

7 robby location = None

8 ball locations = {}
9 grippers = []

10 free grippers = []

11
12 for fact in init:

13 if fact[0] == ’at−robby’:
14 robby location = fact[1]

15 elif fact[0] == ’at’ and len(fact) == 3:

16 ball locations[fact[1]] = fact[2]

17 elif fact[0] == ’gripper’:

18 grippers.append(fact[1])

19 elif fact[0] == ’free’:

20 free grippers.append(fact[1])

21
22 # Extract goals

23 goals = []

24 for fact in goal:

25 if fact[0] == ’at’ and len(fact) == 3:

26 goals.append((fact[1], fact[2]))

27
28 # Process each goal

29 for ball, target room in goals:

30 current room = ball locations[ball]

31
32 # Skip if ball is already in target room

33 if current room == target room:

34 continue

35
36 # Move Robby to ball’s current room if needed

37 if robby location != current room:

38 solution.append(f"(move {robby location} {current room})")
39 robby location = current room

40
41 # Pick up the ball with a free gripper

42 if free grippers:

43 gripper = free grippers.pop(0)

44 solution.append(f"(pick {ball} {current room} {gripper})")
45
46 # Move Robby to target room if needed

47 if robby location != target room:

48 solution.append(f"(move {robby location} {target room})")
49 robby location = target room

50
51 # Drop the ball

52 solution.append(f"(drop {ball} {target room} {gripper})")
53 free grippers.append(gripper)

54
55 # Update ball location

56 ball locations[ball] = target room



57
58 return solution

Generalized Plan for Blocksworld (DeepSeek, F5-3)
1 from typing import List, Tuple, Set

2
3 def generate solution(objects: Set[str], init: Set[Tuple], goal: Set[Tuple]) −> List[str]:

4 solution = []

5
6 # Initialize current state

7 current clear = set()

8 current ontable = set()

9 current hand = None

10 current on = {}
11
12 for fact in init:

13 if fact[0] == ’clear’:

14 current clear.add(fact[1])

15 elif fact[0] == ’ontable’:

16 current ontable.add(fact[1])

17 elif fact[0] == ’handempty’:

18 current hand = None

19 elif fact[0] == ’holding’:

20 current hand = fact[1]

21 elif fact[0] == ’on’:

22 current on[fact[1]] = fact[2]

23
24 # Phase 1: Move all blocks to the table

25 while any(obj not in current ontable for obj in objects):

26 if current hand is not None:

27 # Put down the block in hand

28 block = current hand

29 solution.append(f"(put−down {block})")
30 current ontable.add(block)

31 current clear.add(block)

32 current hand = None

33 else:

34 # Find a clear block that is not on the table

35 found block = None

36 for block in current clear:

37 if block not in current ontable:

38 found block = block

39 break

40 if found block is None:

41 break

42
43 base block = current on[found block]

44 solution.append(f"(unstack {found block} {base block})")
45 current hand = found block

46 current clear.remove(found block)

47 current clear.add(base block)

48 del current on[found block]

49
50 # Phase 2: Build goal stacks

51 goal on = {}
52 for fact in goal:

53 if fact[0] == ’on’:

54 goal on[fact[1]] = fact[2]



55
56 # Compute goal stacks

57 goal ontable = objects − set(goal on.keys())
58 goal children = {}
59 for top, bottom in goal on.items():

60 goal children[bottom] = top

61
62 stacks = []

63 visited = set()

64 for block in goal ontable:

65 if block in visited:

66 continue

67 stack = [block]

68 visited.add(block)

69 current = block

70 while current in goal children:

71 next block = goal children[current]

72 stack.append(next block)

73 visited.add(next block)

74 current = next block

75 stacks.append(stack)

76
77 # Build each stack from bottom up

78 for stack in stacks:

79 for i in range(1, len(stack)):

80 solution.append(f"(pick−up {stack[i]})")
81 solution.append(f"(stack {stack[i]} {stack[i−1]})")
82
83 return solution


