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Introduction

e RNNs are general models of sequential data
o  Not designed specifically to capture language
e Do LSTMs perform better when the following (linguistic) properties are
present?
o  Hierarchical structure

o  Dependencies
o  Zipfian frequency distribution

e LSTMs trained on linguistic data are able to memorize sequences of greater

length!
o  Why? Stay tuned!



The Task

e Simple non-linguistic task: predict the middle token
o  Middle so that the LSTM can’t cheat

e All sequences of equal length (train & test)
e [valuated on 100 uniformly sampled rarest words

o Can’t just output ‘the’ every time!
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e Tokens embedded with a randomly
initialized matrix

Setup: LSTM sketch e Encoded by a single-layer LSTM

e (Output is a probability distribution over
the vocabulary
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Setup: One does not simply...

e The weights of the embedding matrix &
the output projection are frozen so that
the LSTM doesn’t cheat by shifting
weights in one of the vector spaces
(embedding or output)

e LSTM parameters are the only

trainable weights



Setup: freezing and tying weights

Embedding matrix: £ € R*?
Output matrix: O € Rv*"
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Setup: freezing and tying weights




Datasets

Uniform

o  Words randomly sampled from a uniform distribution over the vocabulary

o  ‘the’ should appear as frequently as ‘sesquipedalian’

Unigram

o Integrate Zipfian token frequencies
N-gram (N=5,10,50)

o  Permuted chunks of text of length N
Language

o Real language

Our experiments:
o  Uniform with |V|=9
o  Unigram with a less dramatic distribution
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Results: Comparing the Settings
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Results: Adding Hidden Units
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Results: Validation and Test sets
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A Peek Inside the LSTM

e How? Counting!
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Our Experiments: Uniform & Unigram

What is it about unigram that helps the model learn?

Would a much less dramatic distribution work?

A much simpler task: |V| = 9 (digits O through 8)

Uniform: all digits equiprobable

Validation accuracy: 100%
Test accuracy: 82%

Unigram: one digit has the p=0.12, the
rest: p=0.11

Validation accuracy: 100%
Test accuracy: 100%

Both models learn fast (5 epochs to achieve perfect validation

accuracy), but “uniform” overfits




Our Experiments: Uniform & Unigram
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The model doesn’t seem to be employing the same strategy for
learning (i.e., no counting behavior exhibited in uniform)



Conclusions

e Uniformly sampled data is only trainable up to seq. length 10
e Language data allows trainability up to seq. length 300

e Specific neurons are used to track timestep information

e Open question as to why the task can be solved on linguistic data
o additional patterns and structure in language-based data?



Wait...but why?

The big question: if the task is nonlinguistic/does not rely on
structure in the data, why is structure needed to learn it?

The authors’ conjecture:

“Linguistic data offers more reasonable, if approximate,
pathways to loss minimization, such as counting frequent
words and phrases”

What does that mean exactly? Alternative ideas?
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