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ABSTRACT
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Aim: Why LSTMs are successful? 

So far, we know,

● RNNs suffer from vanishing gradient (VG) problem
● To combat it, LSTMs  are used
● Memory gates present in LSTM mitigate vanishing gradient 

problem
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This study reveals

● Gates themselves are powerful recurrent models
● LSTMs can be viewed as combination of  2 components:
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Simple RNN
(S-RNN) Gate Mechanism



To prove it,
Ablations on different NLP applications

Outcome:
In most settings, gating mechanism alone performs fairly equal 
to LSTM
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Quick Recap (RNN & LSTMs)
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Basic structure of Simple RNN

9Image Source: Google Images 



But RNN suffers from vanishing gradient problem..

Alternative?   LSTMs
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Long Short Term Memory(LSTM)

11Image Source: Google Images 
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C~
t = tanh(Wchht-1 + Wcxxt)

 it= 𝝈 (Wihht-1 + Wixxt)

ft= 𝝈 (Wfhht-1 + Wfxxt)

Ct= itㅇ C~
t +  ft ㅇ Ct-1

ot= 𝝈 (Wohht-1 + Woxxt)

ht= otㅇ tanh(Ct)



So far, we know LSTMs introduced to combat 
vanishing gradient problem.

Q) Can we explain why LSTMs are                    
successful?

The answer is Yes
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What do Memory Cells Compute?
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LSTM  as a hybrid of 3 sub-components:
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Content Layer

Output Layer

Memory Cell



Content Layer
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C~
t= tanh(Wchht-1+Wcxxt) 



Memory Cell
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it= 𝝈(Wihht-1 + Wixxt)

ft= 𝝈(Wfhht-1 + Wfxxt)

Ct= itㅇC~
t +  ftㅇCt-1



Output Layer
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ot= 𝝈 (Wohht-1 + Woxxt)

ht= otㅇ tanh(Ct)



Experiments
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Simplified LSTM architectures 

To test modeling power, the model has different ablations:

● LSTM-(S-RNN) 
● LSTM- (GATES)
● LSTM-(S-RNN)-OUT
● LSTM-(S-RNN)-HIDDEN
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LSTM-(S-RNN)
● Replace S-RNN in the Content Layer with simple linear transformation
● Replace equation in Subcomponent 1 Content Layer
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      C~
t =  Wcxxt 

Old formula

New Formula

C~
t= tanh(Wchht-1+Wcxxt) 



LSTM-GATES
● Removing the output gate from LSTM
● Replacing Equation from Output Layer Subcomponent 3
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Old Formula

New Formula

it= 𝝈 ( Wixxt)



LSTM-(S-RNN)-OUT
● Remove S-RNN and OUTPUT gate from LSTM
● New Model can be written as
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Element-Wise Weighted Sum 
● Possible to show memory cell implicitly computes an element-wise 

weighted sum of all the previous layers 
● Expanding the recurrence equation,
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LSTM-(S-RNN)-HIDDEN
● Ablate the hidden state from the gates 
● Each gate is then computed using the formula
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Experimental Setup
● Consider 4 NLP cases 

● Same hyperparameter and experimental setup for 
LSTM and simplified LSTM

● Does Simplified LSTM perform equally or better?
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Language Models

•Penn Treebank- it is a dataset which tags the 
                                grammatical categories of each token in
          the text corpus

•Two configurations:- Medium and large are tested 
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Question Answering
•Two different QA systems

-BiDAF contains 3 LSTMs 
-phrase layer, modelling layer, span end encoder layer

•All LSTMs are replaced by there simplified counterparts
•Hyperparameters are not modified

-DrQA open source replace LSTMs leaving everything   
 intact 
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Dependency Parsing

•Deep biaffine Dependency Parser which relies on 
stacked bidirectional LSTMs to learn context sensitive 
word embeddings for determining arcs between a pair of 
words

•Existing hyperparameters are used and LSTMs are 
replaced.
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Machine Translation
● Open NMT- train German to English Translation
● Default models and hyperparameters
● Replacing Bidirectional LSTMs encoder with simplified LSTMs
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Related Work

● Different variants of LSTMs explored
● LSTMs with rewiring of connections
● Quasi-recurrent models
● Recurrent additive networks
● But, this is first study to provide comparison b/w LSTMs with and 

without recurrent layer
● Focuses on explaining what LSTMs are learning
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Conclusion
● Removing S-RNN       Little/no performance loss in LSTM
● Gating mechanism is important
● LSTMs powerful       Dynamically compute elementwise 

weighted sums of content layers.
● Ablating recurrence from gates        Considerable drop in 

performance 
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Thank You !
Questions?/Comments/Suggestions

39



40



41



LSTM as Self-Attention

● LSTM weight are vectors, Attention computes scalar weights
● Weighted sum allows linear complexity rather than quadratic
● Attention has probabilistic interpretation due to softmax normalisation
● Sum of weights in LSTM can go to sequence lengths
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