Long Short-Term Memory as a Dynamically Computed Element-wise Weighted Sum

Sara Khan Saumya Agarwal -

Authors of the paper

(L-R) Omer Levy, Kenton Lee, Nicholas FitzGerald, Luke Zettlemoyer Paul G. Allen School, University of Washington, Seattle, WA

ACL 2018, pages 732-739

Outline

- Abstract
- Quick Recap
- What do Memory Cells compute?
- Experiments
- Related Work
- Conclusion

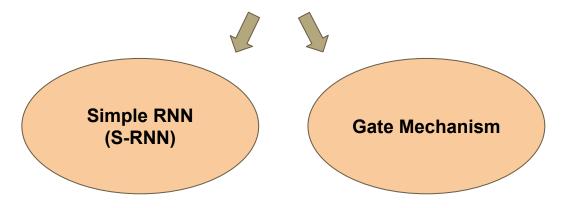
Aim: Why LSTMs are successful?

So far, we know,

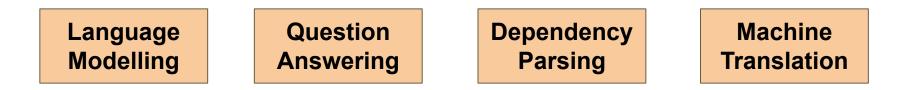
- RNNs suffer from vanishing gradient (VG) problem
- To combat it, LSTMs are used
- Memory gates present in LSTM mitigate vanishing gradient problem

This study reveals

- Gates themselves are powerful recurrent models
- LSTMs can be viewed as combination of 2 components:



Ablations on different NLP applications

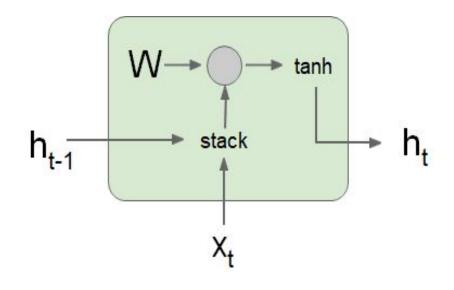


Outcome:

In most settings, gating mechanism alone performs fairly equal to LSTM

Quick Recap (RNN & LSTMs)

Basic structure of Simple RNN

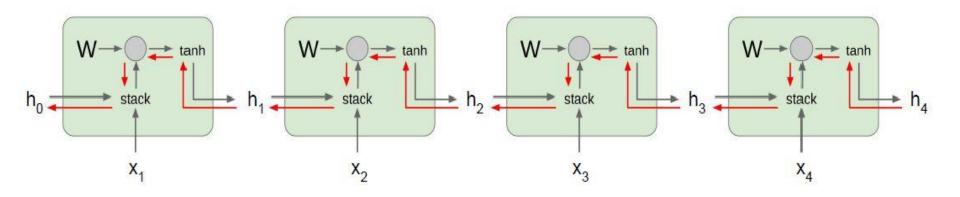


$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$
$$= \tanh\left(\begin{pmatrix}W_{hh} & W_{hx}\end{pmatrix}\begin{pmatrix}h_{t-1}\\x_{t}\end{pmatrix}\right)$$
$$= \tanh\left(W\begin{pmatrix}h_{t-1}\\x_{t}\end{pmatrix}\right)$$

Image Source: Google Images

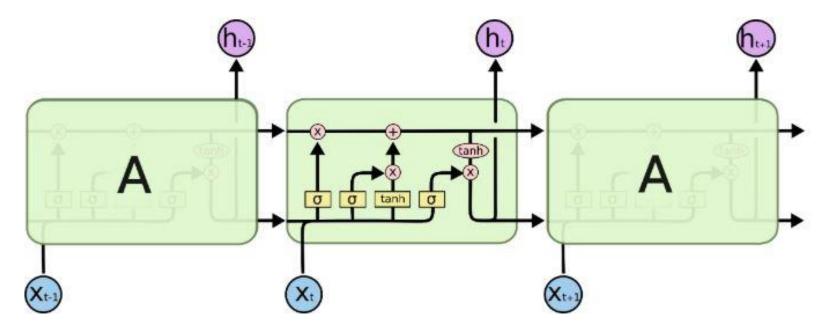
9

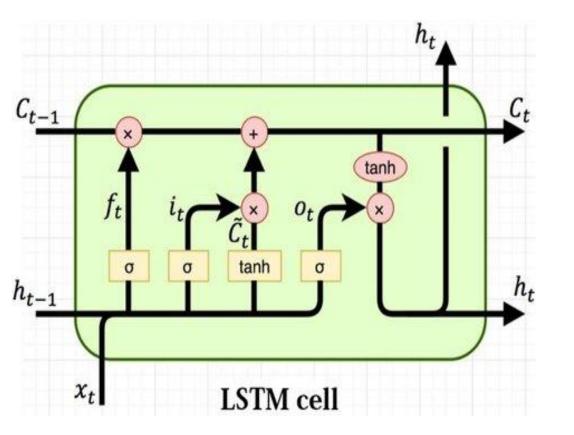
But RNN suffers from vanishing gradient problem..



Alternative? LSTMs

Long Short Term Memory(LSTM)





$$C_{t}^{-} = tanh(W_{ch}h_{t-1} + W_{cx}x_{t})$$

$$i_{t} = \sigma(W_{ih}h_{t-1} + W_{ix}x_{t})$$

$$f_{t} = \sigma(W_{fh}h_{t-1} + W_{fx}x_{t})$$

$$C_{t} = i_{t} \circ C_{t}^{-} + f_{t} \circ C_{t-1}$$

$$o_{t} = \sigma(W_{oh}h_{t-1} + W_{ox}x_{t})$$

$$h_{t} = o_{t} \circ tanh(C_{t})$$

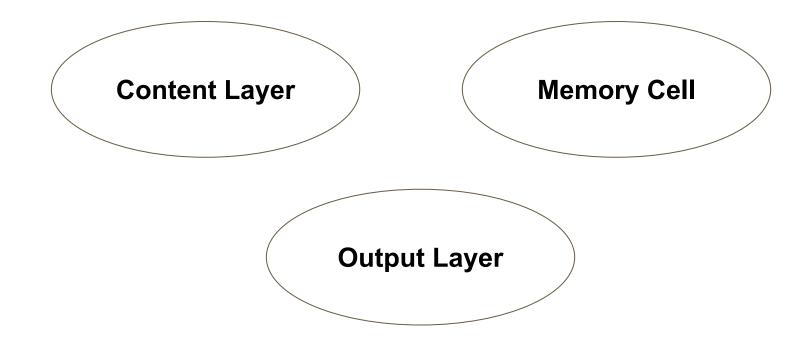
So far, we know LSTMs introduced to combat vanishing gradient problem.

Q) Can we explain why LSTMs are successful?

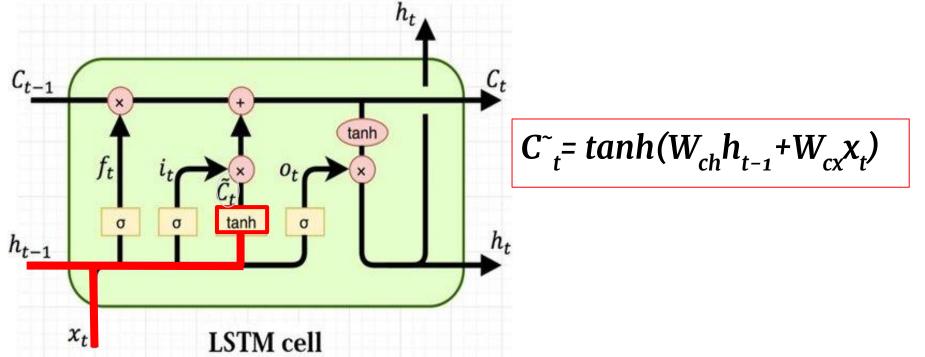
The answer is Yes

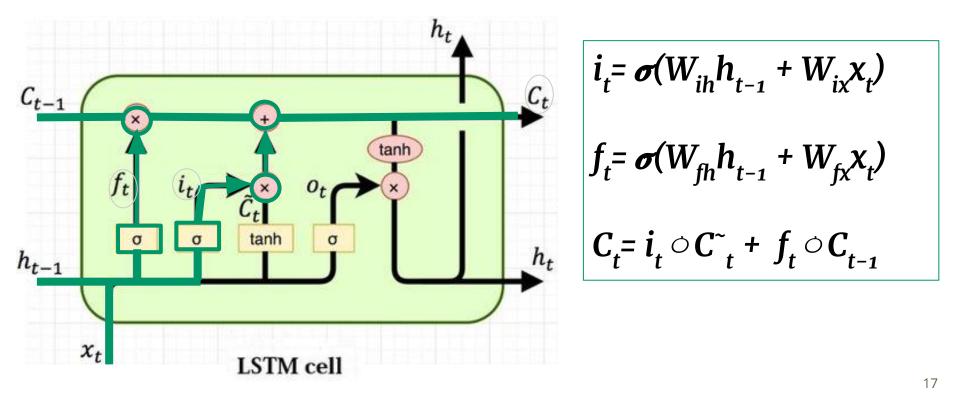
What do Memory Cells Compute?

LSTM as a hybrid of 3 sub-components:

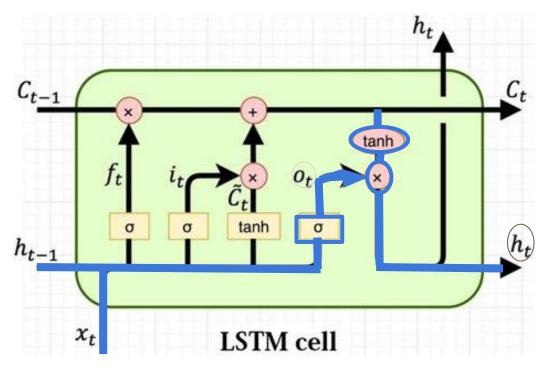


Content Layer





Output Layer



$$o_t = \sigma (W_{oh}h_{t-1} + W_{ox}x_t)$$
$$h_t = o_t \circ tanh(C_t)$$

Experiments

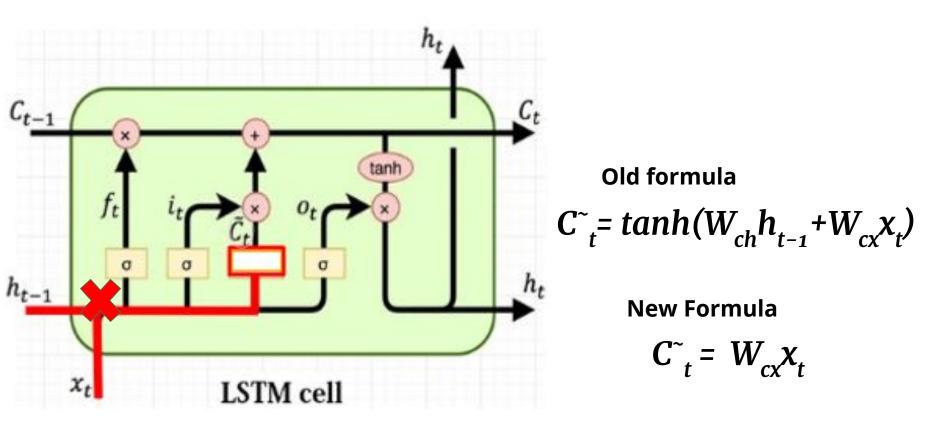
Simplified LSTM architectures

To test modeling power, the model has different ablations:

- LSTM-(S-RNN)
- LSTM- (GATES)
- LSTM-(S-RNN)-OUT
- LSTM-(S-RNN)-HIDDEN

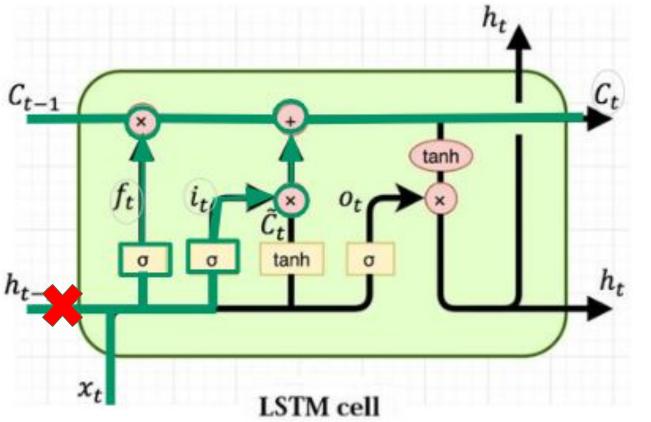
LSTM-(S-RNN)

- Replace S-RNN in the Content Layer with simple linear transformation
- Replace equation in Subcomponent 1 Content Layer



LSTM-GATES

- Removing the output gate from LSTM
- Replacing Equation from Output Layer Subcomponent 3



Old Formula
$$i_t = \sigma(W_{ih}h_{t-1} + W_{ix}x_t)$$

New Formula

 $i_t = \sigma(W_{ix} x_t)$

LSTM-(S-RNN)-OUT

- Remove S-RNN and OUTPUT gate from LSTM
- New Model can be written as

$$h_t = \text{output}\Big(\sum_{j=0}^t w_j^t \circ \text{content}(x_j)\Big)$$

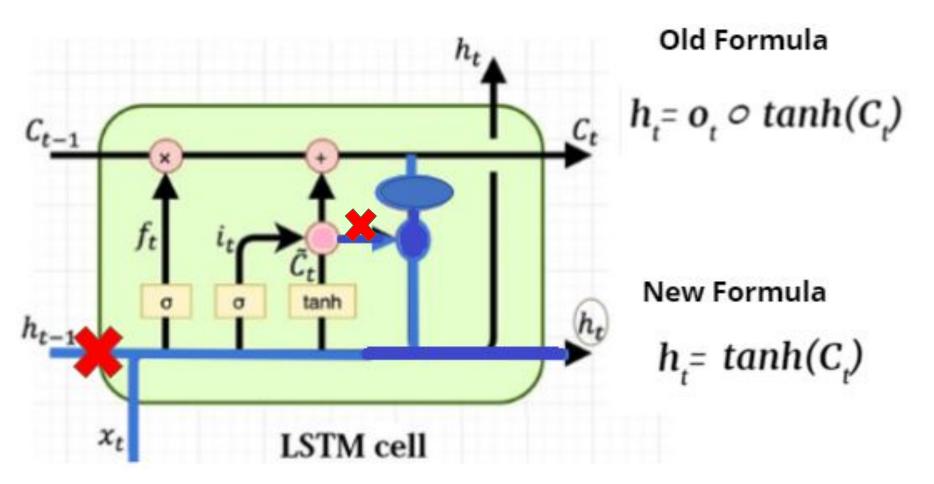
Element-Wise Weighted Sum

- Possible to show memory cell implicitly computes an element-wise weighted sum of all the previous layers
- Expanding the recurrence equation,

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

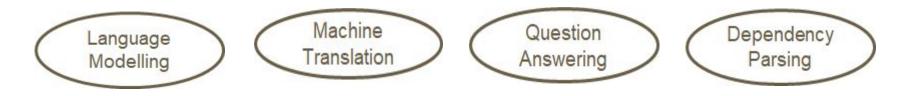
LSTM-(S-RNN)-HIDDEN

- Ablate the hidden state from the gates
- Each gate is then computed using the formula



Experimental Setup

• Consider 4 NLP cases



- Same hyperparameter and experimental setup for LSTM and simplified LSTM
- Does Simplified LSTM perform equally or better?

•Penn Treebank- it is a dataset which tags the grammatical categories of each token in the text corpus

•Two configurations:- Medium and large are tested

Configuration	Model	Perplexity
PTB (Medium)	LSTM	83.9 ± 0.3
	- S-RNN	80.5
	- S-RNN - OUT	81.6
	- S-RNN - HIDDEN	83.3
	- GATES	140.9
PTB (Large)	LSTM	78.8 ± 0.2
	- S-RNN	76.0
	- S-RNN - OUT	78.5
	- S-RNN - HIDDEN	82.9
	- GATES	126.1

Table 1: Performance on language modeling benchmarks, measured by perplexity.

Question Answering

- •Two different QA systems
 - -BiDAF contains 3 LSTMs
- -phrase layer, modelling layer, span end encoder layer
 •All LSTMs are replaced by there simplified counterparts
 •Hyperparameters are not modified
 -DrQA open source replace LSTMs leaving everything intact

System	Model	EM	F1
	LSTM	67.9 ± 0.3	77.5 ± 0.2
BiDAF	- S-RNN	68.4	78.2
	- S-RNN - OUT	67.4	77.2
	- S-RNN - HIDDEN	66.5	76.6
	- GATES	62.9	73.3
	LSTM	68.8 ± 0.2	78.2 ± 0.2
DrQA	- S-RNN	68.0	77.2
	- S-RNN - OUT	68.7	77.9
	- S-RNN - HIDDEN	67.9	77.2
	- GATES	56.4	66.5

Table 2: Performance on SQuAD, measured by exact match (EM) and span overlap (F1).

Dependency Parsing

•Deep biaffine Dependency Parser which relies on stacked bidirectional LSTMs to learn context sensitive word embeddings for determining arcs between a pair of words

•Existing hyperparameters are used and LSTMs are replaced.

Model	UAS	LAS
LSTM	90.60 ± 0.21	88.05 ± 0.33
- S-RNN	90.77	88.49
- S-RNN - OUT	90.70	88.31
- S-RNN - HIDDEN	90.53	87.96
- GATES	87.75	84.61

Table 3: Performance on the universal dependencies parsing benchmark, measured by unlabeled (UAS) and labeled attachment score (LAS).

Machine Translation

- Open NMT- train German to English Translation
- Default models and hyperparameters
- Replacing Bidirectional LSTMs encoder with simplified LSTMs

Model	BLEU	
LSTM	38.19 ± 0.1	
- S-RNN	37.84	
- S-RNN - OUT	38.36	
- S-RNN - HIDDEN	36.98	
- GATES	26.52	

Table 4: Performance on the WMT 2016 multimodal English to German benchmark.

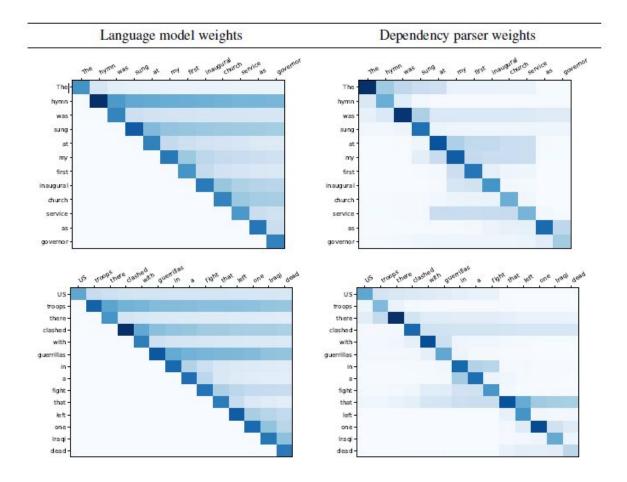
Related Work

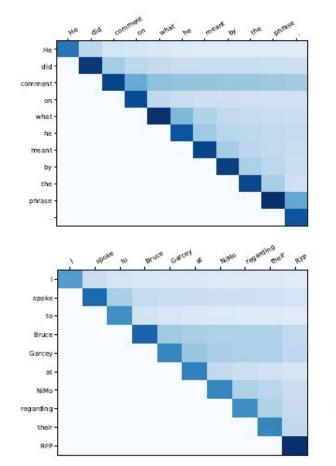
- Different variants of LSTMs explored
- LSTMs with rewiring of connections
- Quasi-recurrent models
- Recurrent additive networks
- But, this is first study to provide comparison b/w LSTMs with and without recurrent layer
- Focuses on explaining what LSTMs are learning

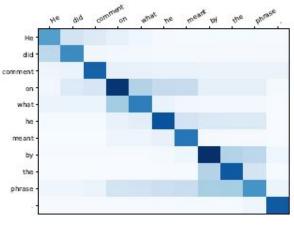
Conclusion

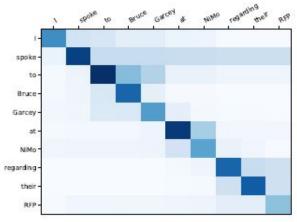
- Removing S-RNN Little/no performance loss in LSTM
- Gating mechanism is important
- LSTMs powerful Dynamically compute elementwise weighted sums of content layers.
- Ablating recurrence from gates Considerable drop in performance

Thank You ! Questions?/Comments/Suggestions









LSTM as Self-Attention

- LSTM weight are vectors, Attention computes scalar weights
- Weighted sum allows linear complexity rather than quadratic
- Attention has probabilistic interpretation due to softmax normalisation
- Sum of weights in LSTM can go to sequence lengths