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Reminder

The big picture
▸ Formalize problem as learning a function: f ∶ Rn ↦ Rm.
▸ Define a class of models. That, is a class of ’candidate’ functions
gθ ∶ Rn ↦ Rm that we know how to compute.
▸ θ ∈ Rk : parameters of the model.

▸ Find the model gθ∗ providing the best approximation of f given
available evidence.

Question
▸ What is the best approximation (given available evidence)?
▸ (How do we find it?)
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Maximum likelihood.

Classification.
▸ Observations: set of pairs O = {(x1, y,1 ) . . . (xn, yn)}.
▸ For each observed pair (x, y), y ∈ Y = {c1, . . . , ck}, finite set of classes.
▸ Model: pθ(y ∣ x): for each possible input, determines conditional
(predictive) probability over outcome in Y .

Best model:
▸ Criterion for the quality of the model: how well does it account for
observations: the higer pθ(O), the better the model.

▸ Loss function (measure how ‘bad’ the model is): 1
pθ(O) .
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▸ Loss function (measure how ‘bad’ the model is): 1
pθ(O) .

Potential issues:
1. What is actually pθ(O)? Model introduced above offers only
conditional probability pθ(y ∣ x).

2. Theoretically, we should care about both unobserved and observed
data. How exactly does this relate to maximizing the likelihood of
data?

3. What if we want to use something other likelihood?
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Potential issue 1

What is actually pθ(O)?
▸ Assume inputs follow some (paramter-independent) distribution.
▸ Mix that with the model predictive probability to obtain a
parametrized distribution over observations.

▸ Here, for instance, assume inputs x1 . . . xn are outcomes of some i.i.d.
random variables with distribution p.

Likelihood of observations
In our example:

pθ(O) =
n
∏
i=1
p(xi)pθ(yi ∣ xi)
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Are we there yet?
Likelihood and loss
In our example:

pθ(O) =
n
∏
i=1
p(xi)pθ(yi ∣ xi)

L(θ) = 1
pθ(O) =

n
∏
i=1

1
p(xi)pθ(yi ∣ xi)

Best model’s params: argminθL(θ)

Wait a minute.

▸ How do we compute LWithout knowing p?

We don’t

▸ Write L(θ) = ∏n
i=1

1
p(xi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
parameter-independent constant

×∏n
i=1

1
pθ(yi∣xi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
L′(θ)

.

▸ Minimizing L and L′ is the same.
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Potential issue 2
Theoretically, should’nt the ‘best’ model depend on unobserved
data too?
▸ Of course we cannot use unavailable data in our search.
▸ But does not mean that the mathematical definition should not
consider unobserved data.

▸ Assume data distributed following ‘ground truth’ distribution: p̂(x, y).
▸ Best model: model yielding the joint distribution ‘closest’ to p̂(x, y) i.e.
L(θ) = DKL(p̂∣∣pθ).

Kullback-Leibler divergence

DKL(p∣∣q) = ∑
o possible data

p(o) × −log(q(o))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Cross-entropyH(p,q)

−∑
o
p(o) × −log(p(o))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
entropy H(p)
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Back to observations
Kullback-Leibler divergence

DKL(p∣∣q) = ∑
o possible data

p(o) × −log(q(o))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Cross-entropyH(p,q)

−∑
o
p(o) × −log(p(o))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
entropy H(p)

▸ H(p) does not depend q, so we can just search for qminimizing cross
entropy.

▸ Back to practical consideration: must use available observations to
approximate H(p,q).

▸ Remark that H(p,q) = EX∼p[−log(q(X))] is an expectation (under p).
Under some assumptions (e.g. i.i.d. observations, but not only) we can
approximate

H(p,q) ∼ 1
n

n
∑
i=1
−log(q(oi))

using n observations o1, . . . ,on.
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Back to likelihood:

With notations from before:
▸ Ground truth: p̂(x, y).
▸ Model: pθ(x, y) = p̂(x)pθ(y∣x).

H(p̂,pθ) ∼
1
n®

independent of θ

n
∑
i=1
−log(p̂(xi)pθ(y ∣ x))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
log(∏n

i=1
1

p(xi)
)
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Last issue

What if we don’t want to use likelihood (or DKL)?
▸ In the DKL setting ‘badness’ of the model measured by:

EX∼p[−log(q(X))].
▸ Intuition: −log(q(x)) = log(1/q(x)): measures (badness of)
performance of the model over one particular data point. Average
over every data-point.

▸ The general case: consider arbitrary loss function L(θ, x)measuring
performance over one data-point x.

▸ Minimize EX∼p[L(θ,X)] for θ.
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Finding the best model. First step.

▸ General method: (stochastic) gradient descent.
▸ Today, first part: gradients.
▸ Necessary condition for being the minimum of a differentiable
function f: f has 0 derivative.
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Derivatives: reminder (whiteboard)

Whiteboard
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Critical points and local minima

Whiteboard
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Special case: convex optimisation

Whiteboard
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Common derived functions:

▸ ∀n ∈ Z, [xn]′ = nxn−1.
▸ [log(x)]′ = 1

x .
▸ [ex]′ = ex.
▸ [cos(x)]′ = −sin(x)
▸ [sin(x)]′ = cos(x)
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Reminder: property of derivatives

Chain rule:
For f, g ∶ R↦ R,A,B ⊆ R s.t. g differentiable over A, f differentiable over
g(A),

[f ○ g]′ = f′ ○ g × g′

Composition rules:
If f and g differentiable then
▸ f + g differentiable and (f + g)′ = f′ + g′.
▸ f and g differentiable and [f × g]′ = f′g + fg′.
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Partial derivatives

Say we have a function f ∶ Rn → R, e.g.

f(x, y) = x2y

Partial derivatives derive with respect to one input dimension, and fix all
other inputs:

∂

∂x
f(x, y) = 2xy

∂

∂y
f(x, y) = x2
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Partial derivatives

The gradient is the 1 × n-dimensional vector of partial derivatives:

∇f = ( ∂f
∂x1 ⋯ ∂f

∂xn )

Example: if again f(x, y) = x2y, then:

∇f(x, y) = (2xy x2)
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Deriving multi-dimensional functions

Say we have a function f ∶ R→ Rn, e.g.

f(x) =
⎛
⎝
f1(x)
f2(x)

⎞
⎠
=
⎛
⎝
5 − x

3x2
⎞
⎠

(We write f1(x) = 5 − 1 and f2(x) = 3x2 for each dimension.)
Derivatives for multi-dimensional functions are just done separately for
each dimension, and written in a Matrix called the Jacobian:

Jf(x) =
⎛
⎝
f′1(x)
f′2(x)

⎞
⎠
=
⎛
⎝
−1
6x

⎞
⎠
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The general case

Now for a function f ∶ Rn → Rm, we have the following Jacobian matrix:

Jf(x1, . . . , xn) =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∂f1
∂x1

∂f1
∂x2 ⋯ ∂f1

∂xn
∂f2
∂x1

∂f2
∂x2 ⋯ ∂f2

∂xn

⋯ ⋯ ⋯ ⋯
∂fm
∂x1

∂fm
∂x2 ⋯ ∂fm

∂xn

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠
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Example

If the function is:

f(x, y) =
⎛
⎝
5 − x + 4y

x2y7
⎞
⎠

Then the Jacobian is:

Jf(x, y) =
⎛
⎜
⎝

∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

⎞
⎟
⎠
=
⎛
⎝
−1 4

2xy7 7x2y6
⎞
⎠
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Generalized chain rule

Functions f ∶ Rm → Rk and g ∶ Rn → Rm, want to derive their concatenation:

(f ○ g)(x1, . . . , xn) = f(g(x1, . . . , xn))

Then the Jacobian of the composed function is:

Jf○g(x) = Jf(g(x)) ⋅ Jg(x)
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