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Approximating functions

The big picture
▸ Formalize problem as learning a function: f ∶ Rn ↦ Rm.
▸ Define a class of models. That, is a class of ’candidate’ functions
gθ ∶ Rn ↦ Rm that we know how to compute.
▸ θ ∈ Rk : parameters of the model.

▸ Find the model gθ∗ providing the best approximation of f given
available evidence.

Questions
▸ Which class of models?
▸ What is the best approximation (given available evidence)?
▸ How do we find it?
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POS-tagging example.

▸ Lexicon: V = {v1, . . . , vL}, and POS-TAGS: U = {u1, . . . , uM}.
▸ Observations: texts x = (w1, . . . ,wN) with annotated POS-TAGs
sequences y = (t1, . . . , tN).

▸ Hypothesis: observations (x, y) are instances of some function
f ∶ x ↦ y.

▸ Goal: use observations to find a good computable approximation of f.
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Example observations

V = {the, a,girls,walk, take, look},U = {DET,N,V}

Observations: x1 =(the, girls, walk) y1 = (DET,N,V)
x2 =(the, girls, take, a walk) y2 = (DET,N,V,DET,N) .

Accounting for observations is not enough
The following function is obviously compatible with all observations:

f ∶ { x1 ↦ y1
x2 ↦ y2

but we haven’t learned anything new.
▸ Undefined for unobserved x’s. We could take arbitrary definition.
▸ Won’t generalize to new data.
▸ Need to restrict to candidate functions capturing shared structures
between observed and unobserved instances.
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A triple requirement

The considered class of candidate functions (or ‘models’) should be
▸ Expressive enough to account sufficiently for observations. (Example
on blackboard)

▸ Constrained enough to allow generalizing from observations.
▸ Support appropriate learning algorithm so the best model can be
found.
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Example
A simple class of models
▸ POS-TAG only depends on word, not on context: P(u ∣ v).
▸ Candidate model: for each word v in lexicon, conditional distribution
on POS-TAG given this word.

▸ i.e., for each v ∈ V, a vector of ∣U∣ real numbers summing to one.
▸ Best candidate model? Maximizing likelihood of observations:
∏N
i=1 P(yi ∣ xi).

Example
For a model with: P(V ∣ walk) = 1/2, P(N ∣ walk) = 1/2,
P(DET ∣ the) = P(N ∣ girls) = 1:

P((DET,N,V) ∣ (the, girls, walk)) = 1 × 1 × 1/2 = 1/2
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How does it fare with requirements?

Observations: x1 =(the, girls, walk) y1 = (DET,N,V)
x2 =(the, girls, take, a walk) y2 = (DET,N,V,DET,N) .

▸ Support appropriate learning algorithm? Model maximizing likelihood
is obtained by setting P(u ∣ v) = # occurences of wordv with POST-TAG u

# occurences of v . e.g.,
P(V ∣ walk) = 1/2.

▸ Constrained enough to allow generalizing from observation? To some
extent. Can tag new sentences using same words, but no sentences
using unseen words.

▸ Expressive enough to account sufficiently for observations? Not quite.
Best model has only probability 1/2 for both instances, because lacks
context dependence.

Jonas Groschwitz, Antoine Venant Introduction to the mathematics of deep learning. April 15, 2019 7 / 15



Neural networks
▸ In this seminar we are concerned with a specific class of models:
neural networks.

▸ Roughly, a computing device represented as a directed graph where
each node is a computation unit called a neuron.

▸ We will try to understand how to use them in compliance with the
requirements we have mentionned.

A neuron

h

x1

xn

w1

wn
h(w1x1 + ⋅ ⋅ ⋅ +wnxn)

(Example network on whiteboard)
Jonas Groschwitz, Antoine Venant Introduction to the mathematics of deep learning. April 15, 2019 8 / 15



Expressivity of neural models.

Neural networks are very expressive. Here are for instance two known
results (summarized here with some approximation):
▸ For any non-constant, bounded and continuous non-linearity h, any
continuous function f ∶ [0, 1]n ↦ Rm, we can find a neural network
with a single hidden layer, using only h as non-linearity and
approximating f as close as one wants. However the hidden layer
could be extremely large w.r.t the input!

▸ If one allows deeper networks, such an f can be approximated
arbitrarily close by a network with width n + 4, using RELU as
non-linearity.

Note:
The super-simple probabilitic model from before is a neural network too
(with a little work – illustration if time permits)!
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Neural network as a class of models?

▸ Support appropriate learning algorithm? A very general one called
backpropagation. But computationally expensive if the network is
large and ‘gradient explosion’ if the network is deep.

▸ Constrained enough to allow generalizing from observation? In
practice, yes but difficult question. The choice of architecture plays an
important role here too.

▸ Expressive enough to account sufficiently for observations? Yes if the
network is sufficiently large or sufficiently deep.
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Topics for this course

Basics
▸ Mathematical basis for training and using (deep) neural networks.
▸ A little linear algebra, and a little functional analysis, and the
backpropagation algorithm.

▸ Overview of (stochastic) gradient descent.
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Topics for this course

Recurrent neural networks
▸ Gradient explosion problem and existing solutions.
▸ Long Short Term Memory Networks and how they solve the problem.
▸ Sequentially structured inputs.
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Topics for this course

Tree structured inputs
▸ Tree lstm.
▸ Are they more efficient? On what kind of input? Why?
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Topics for this course

Attention
▸ Learning which part of the input to pay attention to.
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Topics for this course

Implementation
▸ Automatic differentiation: making everyone’s life easier.
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