n-dimensional differentiation - exercices

Joans Groschwitz Antoine Venant

Reminder and notational remarks

- When it exits derivative of a function $f: \mathbb{R} \mapsto \mathbb{R}$ is defined at a specific point a :

$$
\frac{\partial f}{\partial x}(a)=f^{\prime}(a)=\overbrace{\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}}^{\text {depends on } a!} .
$$

- Derived function f^{\prime} is - as the name gives away - a function: $f^{\prime}: x \mapsto f^{\prime}(x)$ which to a point associates the derivative at this point. $\frac{\partial f}{\partial x}$ also is a function. For instance, if $f: x \mapsto x^{2}$ then $\frac{\partial f}{\partial x}(a)=2 a$. 全 For simplicity one generally writes $\frac{\partial f}{\partial x}=2 x$ instead of $\frac{\partial f}{\partial x}(x)=2 x$. Note the two distinct meanings of x here: as a variable index and has a real value.
© the partial derivative notation is somewhat misleading: it contextually builds on a specific variable naming choice which is mathematically insignificant: $f: x \mapsto x^{2}$ and $g: y \mapsto y^{2}$ denote the exact same function ; so f^{\prime} and g^{\prime} should also denote the exact same derived function, and they do. But $\frac{\partial g}{\partial x}$ is not meaningful in this context whereas $\frac{\delta f}{\delta x}$ is.
- For any fonction $f:\left\{\begin{aligned} \mathbb{R}^{n} & \mapsto \mathbb{R}^{m} \\ \left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right) & \mapsto\left(\begin{array}{c}f_{1}\left(x_{1}, \ldots, x_{n}\right) \\ \vdots \\ f_{m}\left(x_{1}, \ldots, x_{n}\right)\end{array}\right) \text { and any point } A=\end{aligned}\right.$

$$
\begin{aligned}
& \left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right) \text { and any } i \in[1, n] \text { one can define a function } \\
& \quad f \upharpoonright a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}: \begin{array}{l}
\mathbb{R} \mapsto \mathbb{R} \\
x_{i} \mapsto f\left(a_{1}, \ldots, a_{i-1}, x_{i}, a_{i+1}, \ldots, a_{n}\right)
\end{array} .
\end{aligned}
$$

By definition:

$$
\frac{\partial f}{\partial x_{i}}(A)=\left(f \upharpoonright a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}\right)^{\prime}\left(a_{i}\right)=\frac{\partial f \upharpoonright a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}}{\partial x_{i}}\left(a_{i}\right) .
$$

Again, $\frac{\partial f}{\partial x_{i}}$ is a function, but one also overloads it to denote $\frac{\partial f}{\partial x_{i}}\left(x_{1}, \ldots, x_{n}\right)$ - again not the two distinct meanings of x_{i}.

- Consider $f:\left\{\begin{aligned} \mathbb{R}^{n} & \mapsto \mathbb{R}^{m} \\ \left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right) & \mapsto\left(\begin{array}{c}f_{1}\left(x_{1}, \ldots, x_{n}\right) \\ \vdots \\ f_{m}\left(x_{1}, \ldots, x_{n}\right)\end{array}\right) \text {. When it exists, the jacobian }\end{aligned}\right.$ is also defined at a point $A=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right)$.

$$
J_{f}(A)=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(A) & \ldots & \frac{\partial f_{1}}{\partial x_{n}}(A) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(A) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(A)
\end{array}\right)
$$

Again, J_{f} is both used to denote a (matrix of) function(s), but one also (contextually) writes J_{f} as a shorthand for $J_{f}\left(x_{1}, \ldots, x_{n}\right)$, which is fully compatible with previous conventions:

$$
J_{f}=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right)
$$

- The $j^{\text {th }}$ column of $J_{f}(A)$ is the vector $\left(\begin{array}{c}\frac{\partial f_{1}}{\partial x_{j}}(A) \\ \vdots \\ \frac{\partial f_{m}}{\partial x_{j}}(A)\end{array}\right)$. As a shorthand for it, one writes $\frac{\partial f}{\partial x_{j}}(A)$ (and again simply $\frac{\partial f}{\partial x_{j}}$ when implicitely $A=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$).
- The $j^{t h}$ line of $J_{f}(A)$ is the vector $\left(\frac{\partial f_{i}}{\partial x_{1}}(A), \ldots, \frac{\partial f_{i}}{\partial x_{n}}(A)\right)=\nabla f_{i}(A)$ is the gradient of f_{i} at point A.
- When considered as matrices, vectors can be seen either as single column or single row matrices on the other hand. More formally, there is an isomorphism between \mathbb{R}^{n} and (column) ($n, 1$) matrices on one hand, as well as between \mathbb{R}^{n} and (row) $(1, n)$ matrices. When using a vector as a matrix without precising, we'll generally mean to use the first, i.e. a $(1, n)$ single-column matrix. Beware that, for practical reason, we'll keep using both horizontal $\left(x_{1}, \ldots, x_{n}\right)$ vertical $\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ displays of vectors, depending
on the typographic context. So beware than unless otherwise explicitely stated, a vector use as a matrix is meant to denote a single column matrix.

Exercise 0: looking 'inside' the chain rule.

Assume $f: \mathbb{R}^{l} \mapsto \mathbb{R}^{m}$ and $g: \mathbb{R}^{k} \mapsto \mathbb{R}^{l}$ and $X \in \mathbb{R}^{k}$ s.t. f differentiable in $g(X)$ and g differentiable in X.

We remind that the chain rule has:

$$
J_{f \circ g}(X)=J_{f}(g(X)) \times J_{g}(X)
$$

For $i, j \in[1, m] \times[1, k]$, express $\frac{\partial f_{i} \circ g}{\partial x_{j}}(X)$ using $\nabla f_{i}(g(X))$ and $\frac{\partial g}{\partial x_{j}}(X)$.
Just expand definitions and find $\frac{\partial f_{i} \circ g}{\partial x_{j}}(X)=\nabla f_{i}(g(X)) \cdot \frac{\partial g}{\partial x_{j}}(X)$

Exercise 1

1. Let $M=\left(m_{i, j}\right)_{i \in[1, l], j \in[1, k]}=\left(\begin{array}{ccc}m_{1,1} & \ldots & m_{1, k} \\ \vdots & & \vdots \\ m_{l, 1} & \ldots & m_{l, k}\end{array}\right)$ be an l, k-matrix with real coefficients (i.e. a matrix of real numbers with l lines and k columns).
One considers the linear map: $z:\left\{\begin{array}{l}\mathbb{R}^{k} \mapsto \mathbb{R}^{l} \\ X \mapsto M \times X\end{array}\right.$. Compute J_{z}.
Letting $X=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{k}\end{array}\right)$ we have $z(X)=\left(\begin{array}{c}z_{1}(X) \\ \vdots \\ z_{l}(X)\end{array}\right)$ where

$$
z_{i}(X)=\sum_{j=1}^{k} m_{i, j} x_{j}
$$

Hence

$$
\frac{\partial z_{i}}{\partial x_{j}}=m_{i, j}
$$

Then again,

$$
J_{z}=M
$$

Exercise 2

Compute the Jacobian of the $3 D$ relu activation function $R:(x, y, z) \mapsto(x \times$ $\left.\mathbb{1}_{x>0}, y \times \mathbb{1}_{y>0}, z \times \mathbb{1}_{z>0}\right)$ in any point where it is differentiable.

Non differentiable in x iff $x=0$. Non differentiable in y iff $y=0$ and in z iff $z=0$. Otherwise notice only the diagonal is non-zero and distinguish cases to find:

$$
J_{R}(x, y)=\left(\begin{array}{ccc}
\mathbb{1}_{x>0} & 0 & 0 \\
0 & \mathbb{1}_{y>0} & 0 \\
0 & 0 & \mathbb{1}_{z>0}
\end{array}\right)
$$

Excercise 3

We consider the following (neural network) function f, defined as $f(P, Q, E)=$ $S(Q \times R(P \times E))$ where:

- $E \in \mathbb{R}^{2}$ (input to the neural network).
- $P=\left(\begin{array}{ll}p_{1,1} & p_{1,2} \\ p_{2,1} & p_{2,2} \\ p_{3,1} & p_{3,2}\end{array}\right)$ is a 2,3 matrix (weights of the first layer).
- $Q=\left(\begin{array}{lll}q_{1,1} & q_{1,2} & q_{1,3} \\ q_{2,1} & p_{2,2} & q_{2,3}\end{array}\right)$ is a 3,2 matrix (weights of the second layer).
- R is the relu function.
- $S(x, y)=\left(S_{1}(x, y), S_{2}(x, y)\right)=\left(\frac{e^{x}}{e^{x}+e^{y}}, \frac{e^{y}}{e^{x}+e^{y}}\right)$ is the softmax normalizer.
f as written above is a function taking the matrices P and Q and the two dimensional vector E to a two dimensional vector, but it can equivalently be seen as a function $\mathbb{R}^{12} \times \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$, where we gather the two matrices components (i.e., the parameters of the neural network) into one single 12 dimensional vector: $\Theta=(\underbrace{p_{1,1}, \ldots, p_{3,2}}_{\text {describes } P}, \underbrace{q_{1,1}, \ldots, q_{2,3}}_{\text {describes } Q})$.

For every fixed value of E, we now have a function $f_{E}: \Theta \mapsto f_{E}(\Theta)=$ $f(\Theta, E)$. We first want to compute $J_{f_{E}}$. To this aim we'll use several application of the chain rule. Let us write $z_{E}(\Theta)=P \times E, g_{E}(\Theta)=R\left(z_{E}(\Theta)\right)$, and $z_{E}^{\prime}(\Theta)=Q \times g_{E}(\Theta)$.

1. Show that for any variable index $x \in\left\{p_{1,1}, \ldots, p_{3,2}, q_{1,1}, \ldots, q_{2,3}\right\}, \frac{\partial f_{E}}{\partial x}(\Theta)=$ $J_{S}\left(z_{E}^{\prime}(\Theta)\right) \times \frac{\partial z_{E}^{\prime}}{\partial x}(\Theta)$. Each of the two rows given by ex. 0 .
2. Show that $\frac{\partial z_{E}^{\prime}}{\partial q_{i, j}}\left(g_{E}(\Theta)\right)=g_{E}(\Theta)_{j} \times\binom{\mathbb{1}_{i=1}}{\mathbb{1}_{i=2}}$. Just expand and compute partial derivatives.
3. Show that $\frac{\partial z_{E}^{\prime}}{\partial p_{i, j}}(\Theta)=Q \times \frac{\partial g_{E}}{\partial p_{i, j}}(\Theta)$ By def. of partial derivatives, $\frac{\partial z_{E}^{\prime}}{\partial p_{i, j}}(\Theta=$ $\frac{\partial z_{E}^{\prime} \upharpoonright_{Q}}{\partial p_{i, j}}(P) . z_{E}^{\prime} \upharpoonright_{Q}$ is $z_{E}^{\prime \prime} \circ g_{E}$, where $z_{E}^{\prime \prime}(X)=Q \times X$. Apply exercice $1+$ chain rule.
4. Show that $\frac{\partial g_{E}}{\partial p_{i, j}}(\Theta)=J_{R}\left(z_{E}(\Theta)\right) \times \frac{\partial z_{E}}{\partial p_{i, j}}(\Theta)$. same as 1 .
5. Show that $\frac{\partial z_{E}}{\partial p_{i, j}}=e_{j} \times\left(\begin{array}{l}\mathbb{1}_{i=1} \\ \mathbb{1}_{i=2} \\ \mathbb{1}_{i=3}\end{array}\right)$, where $E=\binom{e_{1}}{e_{2}}$. Expand and compute.
6. We admit that $J_{S}=\left(\begin{array}{cc}S_{1}\left(1-S_{1}\right) & -S_{1} S_{2} \\ -S_{1} S_{2} & S_{2}\left(1-S_{2}\right)\end{array}\right)$. We let $E_{0}=\binom{1}{-1}, P_{0}=$ $\left(\begin{array}{c}3,1 \\ 1,0 \\ -1,2\end{array}\right)$ and $Q_{0}=\binom{1,-1,3}{-2,5,4}$, hence the joint 'flat' vectorial representation of P_{0} and Q_{0} is $\Theta_{0}=(3,1,1,0,-1,2,1,-1,3,-2,5,4)$. Compute the Jacobian $J_{f_{E_{0}}}\left(\Theta_{0}\right)$ of $f_{E_{0}}$ at point Θ_{0}.
From 5:

$$
\begin{aligned}
& \frac{\partial z_{E}}{\partial p_{1,1}}=\left(\begin{array}{c}
e_{1} \\
0 \\
0
\end{array}\right) \quad \frac{\partial z_{E}}{\partial p_{1,2}}=\left(\begin{array}{c}
e_{2} \\
0 \\
0
\end{array}\right) \\
& \frac{\partial z_{E}}{\partial p_{2,1}}=\left(\begin{array}{c}
0 \\
e_{1} \\
0 \\
0 \\
\frac{\partial z_{E}}{\partial p_{3,1}}=\left(\begin{array}{c}
0 \\
0 \\
e_{1}
\end{array}\right) \quad \frac{\partial z_{E}}{\partial p_{2,2}}=\left(\begin{array}{c}
e_{2} \\
0 \\
0 \\
0 p_{3,2}
\end{array}\right) \\
0 \\
e_{2}
\end{array}\right)
\end{aligned}
$$

This is for arbitrary E, so for $E_{0}=(1,-1)$, we get:

$$
\begin{aligned}
& \frac{\partial z_{E_{0}}}{\partial p_{1,1}}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad \frac{\partial z_{E_{0}}}{\partial p_{1,2}}=\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right) \\
& \frac{\partial z_{E_{0}}}{\partial p_{2,1}}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \frac{\partial z_{E_{0}}}{\partial p_{2,2}}=\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right) \\
& \frac{\partial z_{E_{0}}}{\partial p_{3,1}}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \quad \frac{\partial z_{E_{0}}}{\partial p_{3,2}}=\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)
\end{aligned}
$$

Substituting values in definitions, we get $z_{E_{0}}\left(\Theta_{0}\right)=P_{0} \times E_{0}=\left(\begin{array}{c}2 \\ 1 \\ -3\end{array}\right)$. Using exercice 2 we then obtain $J_{R}\left(z_{E_{0}}\right)\left(\Theta_{0}\right)=\left(\begin{array}{c}1,0,0 \\ 0,1,0 \\ 0,0,0\end{array}\right)$. Then question

4 yields:

$$
\begin{array}{ll}
\frac{\partial g_{E_{0}}}{\partial p_{1,1}}\left(\Theta_{0}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad \frac{\partial g_{E_{0}}}{\partial p_{1,2}}\left(\Theta_{0}\right)=\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right) \\
\frac{\partial g_{E_{0}}}{\partial p_{2,1}}\left(\Theta_{0}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \frac{\partial g_{E_{0}}}{\partial p_{2,2}}\left(\Theta_{0}\right)=\left(\begin{array}{c}
0 \\
-1 \\
0 \\
0 \\
0 \\
0
\end{array}\right) \quad \frac{\partial g_{E_{0}}}{\partial p_{3,2}}\left(\Theta_{0}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{array}
$$

Question 3 has $\frac{\partial z_{E_{0}}^{\prime}}{\partial p_{i, j}}\left(\Theta_{0}\right)=Q_{0} \times \frac{\partial g_{E_{0}}}{\partial p_{i, j}}\left(\Theta_{0}\right)$. Pluging in the above values, we find:

$$
\begin{array}{ll}
\frac{\partial z_{E_{0}}^{\prime}}{\partial p_{1,1}}\left(\Theta_{0}\right)=\binom{1}{-2} & \frac{\partial z_{E_{0}}^{\prime}}{\partial p_{1,2}}\left(\Theta_{0}\right)=\binom{-1}{2} \\
\frac{\partial z_{E_{0}}^{\prime}}{\partial p_{2,1}}\left(\Theta_{0}\right)=\binom{-1}{5} & \frac{\partial z_{E_{0}}^{\prime}}{\partial p_{2,2}}\left(\Theta_{0}\right)=\binom{1}{-5} \\
\frac{\partial z_{E_{0}}^{\prime}}{\partial p_{3,1}}\left(\Theta_{0}\right)=\binom{0}{0} & \frac{\partial z_{E_{0}}^{\prime}}{\partial p_{3,2}}\left(\Theta_{0}\right)=\binom{0}{0}
\end{array}
$$

Substituting values in definitions, we get $g_{E_{0}}\left(\Theta_{0}\right)=R\left(z_{E_{0}}\left(\Theta_{0}\right)\right)=\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$.
Then using q. 2, we get:

$$
\begin{array}{ll}
\frac{\partial z_{E_{0}}^{\prime}}{\partial q_{1,1}}\left(\Theta_{0}\right)=\binom{2}{0} & \frac{\partial z_{E_{0}}^{\prime}}{\partial q_{1,2}}\left(\Theta_{0}\right)=\binom{1}{0}
\end{array} \begin{array}{ll}
\frac{\partial z_{E_{0}}^{\prime}}{\partial q_{1,3}}\left(\Theta_{0}\right)=\binom{0}{0} \\
\frac{\partial z_{E_{0}}^{\prime}}{\partial q_{2,1}}\left(\Theta_{0}\right)=\binom{0}{2} & \frac{\partial z_{E_{0}}^{\prime}}{\partial q_{2,2}}\left(\Theta_{0}\right)=\binom{0}{1}
\end{array} \frac{\partial z_{E_{0}}^{\prime}}{\partial q_{2,3}}\left(\Theta_{0}\right)=\binom{0}{0}
$$

Finally, $z_{E_{0}}^{\prime}\left(\Theta_{0}\right)=Q_{0} \times g_{E_{0}}\left(\Theta_{0}\right)=\binom{1}{1}$. So $S_{1}\left(z_{E_{0}}^{\prime}\left(\Theta_{0}\right)\right)=S_{2}\left(z_{E_{0}}^{\prime}\left(\Theta_{0}\right)\right)=$ $\frac{e}{2 e}=\frac{1}{2}$. From the result we admitted on the jacobian of the softmax: $J_{S}\left(z_{E_{0}}^{\prime}\left(\Theta_{0}\right)\right)=\binom{1 / 4,-1 / 4}{-1 / 4,1 / 4}$. Question 1 yields finally:

$$
\begin{array}{ll}
\frac{\partial f_{E_{0}}}{\partial p_{1,1}}\left(\Theta_{0}\right)=\binom{3 / 4}{-3 / 4} & \frac{\partial f_{E_{0}}}{\partial p_{1,2}}\left(\Theta_{0}\right)=\binom{-3 / 4}{3 / 4} \\
\frac{\partial f_{E_{0}}}{\partial p_{2,1}}\left(\Theta_{0}\right)=\binom{-3 / 2}{3 / 2} & \frac{\partial f_{E_{0}}}{\partial p_{2,2}}\left(\Theta_{0}\right)=\binom{3 / 2}{-3 / 2} \\
\frac{\partial f_{E_{0}}}{\partial p_{3,1}}\left(\Theta_{0}\right)=\binom{0}{0} & \frac{\partial f_{E_{0}}}{\partial p_{3,2}}\left(\Theta_{0}\right)=\binom{0}{0}
\end{array}
$$

and

$$
\begin{array}{lll}
\frac{\partial f_{E_{0}}}{\partial q_{1,1}}\left(\Theta_{0}\right)=\binom{1 / 2}{-1 / 2} & \frac{\partial f_{E_{0}}}{\partial q_{1,2}}\left(\Theta_{0}\right)=\binom{1 / 4}{-1 / 4} & \frac{\partial f_{E_{0}}}{\partial q_{1,3}}\left(\Theta_{0}\right)=\binom{0}{0} \\
\frac{\partial f_{E_{0}}}{\partial q_{2,1}}\left(\Theta_{0}\right)=\binom{-1 / 2}{1 / 2} & \frac{\partial f_{E_{0}}}{\partial q_{2,2}}\left(\Theta_{0}\right)=\binom{-1 / 4}{1 / 4} & \frac{\partial f_{E_{0}}}{\partial q_{2,3}}\left(\Theta_{0}\right)=\binom{0}{0}
\end{array}
$$

Which, all put together in one place, gives:

$$
J_{F_{E_{0}}}\left(\Theta_{0}\right)=\left(\begin{array}{cccccccccccc}
3 / 4 & -3 / 4 & -3 / 2 & 3 / 2 & 0 & 0 & 1 / 2 & 1 / 4 & 0 & -1 / 2 & -1 / 4 & 0 \\
-3 / 4 & 3 / 4 & 3 / 2 & -3 / 2 & 0 & 0 & -1 / 2 & -1 / 4 & 0 & 1 / 2 & 1 / 4 & 0
\end{array}\right)
$$

7. We now consider performing one step of gradient descent using a single positive training instance $\left\langle E_{0},+\right\rangle$ and negative log-likelihood loss. The loss function at a given point Θ is thus $l(\Theta)=-\ln \left(f_{E_{0}}[1](\Theta)\right)$ (where $f_{E_{0}}[1]=f_{E_{01}}$ is the function computing only the first component of $f_{E_{0}}$). We execute the step from point Θ_{0}. Compute the direction of the update: $\nabla l\left(\Theta_{0}\right)$. From the chain rule, for any point Θ, $\nabla l(\Theta)=-\frac{1}{f_{E_{0}}[1](\Theta)} \nabla f_{E_{0}}[1](\Theta)$. Since $\nabla f_{E_{0}}[1](\Theta)$ is the first line of the Jacobian of f, and $f_{E_{0}}[1] \Theta_{0}=\frac{1}{2}$ we have:

$$
\left.\begin{array}{rl}
\nabla l\left(\Theta_{0}\right) & =-2 \times\left(\begin{array}{lllllllllllll}
3 / 4 & -3 / 4 & -3 / 2 & 3 / 2 & 0 & 0 & 1 / 2 & 1 / 4 & 0 & -1 / 2 & -1 / 4 & 0
\end{array}\right) \\
& =\left(\begin{array}{lllllllllll}
-3 / 2 & 3 / 2 & 3 & -3 & 0 & 0 & -1 & -1 / 2 & 0 & 1 & 1 / 2
\end{array}\right. \\
0
\end{array}\right)
$$

