n-dimensional differentiation — exercices

Joans Groschwitz Antoine Venant

Reminder and notational remarks

e When it exits derivative of a function f : R — R is defined at a specific

point a:
depends on a!
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Derived function f’ is — as the name gives away — a function: [’ : z — f/(z)
which to a point associates the derivative at this point. g—;Z also is a
function. For instance, if f :  — 2 then %(a) = 2a. A\For simplicity
one generally writes % = 2z instead of %(I) = 2z. Note the two distinct

meanings of x here: as a variable index and has a real value.

the partial derivative notation is somewhat misleading: it contextually
builds on a specific variable naming choice which is mathematically in-
significant: f : z +— 2 and g : y — y? denote the exact same function ;
so f' and ¢’ should also denote the exact same derived function, and they
do. But % is not meaningful in this context whereas % is.
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By definition:
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Again, % is a function, but one also overloads it to denote %(ml, cey Xp)

T

— again not the two distinct meanings of x;.
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Again, J; is both used to denote a (matrix of) function(s), but one also
(contextually) writes J; as a shorthand for Jy(x1,...,z,), which is fully
compatible with previous conventions:
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e The j'" column of J;(A) is the vector : . As a shorthand for it,
Ofm
Ot (4)
T
one writes %(A) (and again simply % when implicitely A =] @ |).
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e The j** line of J;(A) is the vector (%(A), ce gwjl (A)) = Vfi(A) is the
gradient of f; at point A.

e When considered as matrices, vectors can be seen either as single column
or single row matrices on the other hand. More formally, there is an
isomorphism between R™ and (column) (n,1) matrices on one hand, as
well as between R™ and (row) (1,n) matrices. When using a vector as a
matrix without precising, we’ll generally mean to use the first, i.e. a (1,n)
single-column matrix. Beware that, for practical reason, we’ll keep using

T
both horizontal (z1,...,x,) vertical | : | displays of vectors, depending
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on the typographic context. So beware than unless otherwise explicitely
stated, a vector use as a matrix is meant to denote a single column
matrix.

Exercise 0: looking ‘inside’ the chain rule.

Assume f : R — R™ and g : R R! and X € R*¥ s.t. f differentiable in g(X)
and ¢ differentiable in X.
We remind that the chain rule has:

J1og(X) = Jp(g(X)) x J4(X).

For i,j € [1,m] x [1, k], express 85;39 (X) using V fi(g(X)) and E?ng(X).

Just expand definitions and find %%é]()() = Vfilg(X))- a%"j(X)

Exercise 1

mi 1 e mik
L. Let M = (mi;)icn i, jenm = be an [, k-matrix with
mi1 . my
real coeflicients (i.e. a matrix of real numbers with  lines and &k columns).
: . RF s R!
One considers the linear map: z: { X Mx X Compute J,.
X1 Z1 (X)
Letting X = | : | we have 2(X) = : where
Tk z21(X)
k
z(X) = me:z:]
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Hence
321- o
ox; "
Then again,
J, =M.

Exercise 2

Compute the Jacobian of the 3D relu activation function R : (z,y,2) — (x X
L50,y X 1ys0,2 x 1,50) in any point where it is differentiable.



Non differentiable in x iff z = 0. Non differentiable in y iff y = 0 and in z
iff z = 0. Otherwise notice only the diagonal is non-zero and distinguish cases
to find:

T.>0 0 0
JR(ma y) = 0 ]131>0 0
0 0 T.50

Excercise 3

We consider the following (neural network) function f, defined as f(P,Q, E) =
S(Q x R(P x E)) where:

e E € R? (input to the neural network).

P11 P12
o P=|p21 p22| isa 2,3 matrix (weights of the first layer).
P31 P32

Q= (Tt 912 93 4g 5 3 9 matrix (weights of the second layer).
2,1 P22 42,3

e R is the relu function.
o S(z,y) = (Si(x,y), S2(x,y)) = (ﬁ, ﬁ) is the softmax normalizer.

f as written above is a function taking the matrices P and @) and the two
dimensional vector F to a two dimensional vector, but it can equivalently be seen
as a function R12 xR? — R?, where we gather the two matrices components (i.e.,
the parameters of the neural network) into one single 12 dimensional vector:
O =(p1,1,---,P3.2,q1,15---,42,3)-

describes P describes Q

For every fixed value of E, we now have a function fg : © — fg(0) =
f(©, E). We first want to compute J,. To this aim we’ll use several application
of the chain rule. Let us write zg(0) = P x E, gg(0©) = R(zg(0)), and
25(0) = Q x gg(0).

1. Show that for any variable index z € {p11,...,P3,2,¢1,1,---,42,3}, %(6) =

Js(25(0)) x Bgf (©). Each of the two rows given by ex. 0.

Z/ ]]-Z:
2. Show that gTZ(gE(e)) = gr(©); x <]1 ,_;

partial derivatives.

>. Just expand and compute

3. Show that 222 () = Qx 222 (6) By def. of partial derivatives, 7-= (6 =
adz]’ir? (P). 25 g is 2% 0 gi, where 27(X) = Q x X. Apply exercice 1 +
chain rule.



4. Show that $2£(0) = Jr(zg(0)) X

1=
5. Show that g;iE‘ =e; X [ Lj=2 |, where & =
N ]li:g
6. We admit that Jg = 51(1 - 51)
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Expand and compute.

tion of Py and Qg is ©9 = (3,1,1,0,—1,2,1,—1,3,—2,5,4). Compute the
Jacobian Jy, (©9) of fg, at point Op.

From 5:
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This is for arbitrary F, so
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Substituting values in definitions, we get
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for Eg = (1,—1), we get:
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Using exercice 2 we then obtain Jr(zg,)(00) =

5 -1
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aPl,(; - 0
0
5 0
ZE
6172,(; = -1
0
5 0
2By
5‘?3,2 - 0
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ZEO(@Q) = PO X EO = 1
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0,1,0 |. Then question
0,0,0
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4 yields:

1 -1
o 1¢)
aifg( O) = 8 aifi (60) = 8
0 0
o 14)
9pe=(00) = (1) 702 (80) = *01
0 0
7] 1¢)
aij (60) = 8 azfg (@0) = 8

0z
Question 3 has apﬁj (©g) = Qo X giig (©p). Pluging in the above values,

we find:

0z 1 0z -1
6;01,01 ( 0) - -2 8p1,g (@0) - 2
Dz, -1 0z, 1

Op2,1 (90) = 5 %(@0) - )

Bz'EO 0 6z350 0
Op3,1 (@0) = 0) Op3,2 (@O) - 0)

2
Substituting values in definitions, we get gg,(00) = R(zg,(00)) = | 1

Then using q. 2, we get:

0z 2 82" 1 oz 0
905 (00) = o] 7032©)=1{y) 5@ = 1,
9z, 0 8z, 0 9z 0
9ans (©0) = (5] 755(@0) =] a55(00) =,

Finally, 2'350(@0) = QoX9gp,(00) = (1) So 51(2930(@0)) = Sg(zgso(e)o)) =

5 = % From the result we admitted on the jacobian of the softmax:
Js(25,(00)) = (1—/14/’4_,1%1) Question 1 yields finally:

deon = (2),) Heen = ()

s = () Feen=( 5,

semen = (o) gz = (o)

and



ofg [ 1)2 Ofr [ 1/4 ofp (0
aql,(i( 0) = —-1/2 aq1,2< 0) = —1/4 aql,i (©0) = 0
ofp (—1)2 afE (—1/4 ofr (0
qu,?( 0) = 1/2 ang( 0) = 1/4 6q2,2 (©0) = 0

Which, all put together in one place, gives:

3/4 —3/4 —3/2 3/2 0 0 1/2 1/4 0 —-1/2 —1/4 0
JFEU(®°)<—?{/4 3/{1 3//2 —3{/2 0 0 —1//2 —1//4 0 1//2 1/{1 0)

. We now consider performing one step of gradient descent using a sin-
gle positive training instance (Ep,+) and negative log-likelihood loss.
The loss function at a given point © is thus [(©) = —In(fg,[1](©))
(where fg,[1] = fg,; is the function computing only the first compo-
nent of fg,). We execute the step from point ©y. Compute the di-
rection of the update: VI(©g). From the chain rule, for any point O,

Vi(©) = —mv fE,[1](©). Since Vfg,[1](0) is the first line of the

Jacobian of f, and fg,[1]0¢ = % we have:

Vi(©g) = -2 x (3/4 —3/4 —3/2 3/2 0 0 1/2 1/4 0 —1/2 —1/4 0)
=(-3/2 3/2 3 -3 00 -1 —-1/2 0 1 1/2 0)



