
n-dimensional differentiation – exercices

Joans Groschwitz Antoine Venant

Reminder and notational remarks

• When it exits derivative of a function f : R 7→ R is defined at a specific
point a:

∂f

∂x
(a) = f ′(a) =

depends on a!︷ ︸︸ ︷
lim
h→0

f(a + h)− f(a)

h
.

• Derived function f ′ is – as the name gives away – a function: f ′ : x 7→ f ′(x)
which to a point associates the derivative at this point. ∂f

∂x also is a

function. For instance, if f : x 7→ x2 then ∂f
∂x (a) = 2a. BFor simplicity

one generally writes ∂f
∂x = 2x instead of ∂f∂x (x) = 2x. Note the two distinct

meanings of x here: as a variable index and has a real value.

B the partial derivative notation is somewhat misleading: it contextually
builds on a specific variable naming choice which is mathematically in-
significant: f : x 7→ x2 and g : y 7→ y2 denote the exact same function ;
so f ′ and g′ should also denote the exact same derived function, and they
do. But ∂g

∂x is not meaningful in this context whereas δf
δx is.

• For any fonction f :


Rn 7→ Rmx1

...
xn

 7→
 f1(x1, . . . , xn)

...
fm(x1, . . . , xn)

 and any point A =

a1

...
an

 and any i ∈ [1, n] one can define a function

f � a1, . . . , ai−1, ai+1, . . . , an :
R 7→ R
xi 7→ f(a1, . . . , ai−1, xi, ai+1, . . . , an)

.

By definition:

∂f

∂xi
(A) = (f � a1, . . . , ai−1, ai+1, . . . , an)′(ai) =

∂f � a1, . . . , ai−1, ai+1, . . . , an
∂xi

(ai).

1

Again, ∂f
∂xi

is a function, but one also overloads it to denote ∂f
∂xi

(x1, . . . , xn)
– again not the two distinct meanings of xi.

• Consider f :


Rn 7→ Rmx1

...
xn

 7→
 f1(x1, . . . , xn)

...
fm(x1, . . . , xn)

 . When it exists, the jacobian

is also defined at a point A =

a1

...
an

.

Jf (A) =


∂f1
∂x1

(A) . . . ∂f1
∂xn

(A)
...

. . .
...

∂fm
∂x1

(A) . . . ∂fm
∂xn

(A)

 .

Again, Jf is both used to denote a (matrix of) function(s), but one also
(contextually) writes Jf as a shorthand for Jf (x1, . . . , xn), which is fully
compatible with previous conventions:

Jf =


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn

 .

• The jth column of Jf (A) is the vector


∂f1
∂xj

(A)
...

∂fm
∂xj

(A)

. As a shorthand for it,

one writes ∂f
∂xj

(A) (and again simply ∂f
∂xj

when implicitely A =

x1

...
xn

).

• The jth line of Jf (A) is the vector (∂fi∂x1
(A), . . . , ∂fi∂xn

(A)) = ∇fi(A) is the
gradient of fi at point A.

• When considered as matrices, vectors can be seen either as single column
or single row matrices on the other hand. More formally, there is an
isomorphism between Rn and (column) (n, 1) matrices on one hand, as
well as between Rn and (row) (1, n) matrices. When using a vector as a
matrix without precising, we’ll generally mean to use the first, i.e. a (1, n)
single-column matrix. Beware that, for practical reason, we’ll keep using

both horizontal (x1, . . . , xn) vertical

x1

...
xn

 displays of vectors, depending

2

on the typographic context. So beware than unless otherwise explicitely
stated, a vector use as a matrix is meant to denote a single column
matrix.

Exercise 0: looking ‘inside’ the chain rule.

Assume f : Rl 7→ Rm and g : Rk 7→ Rl and X ∈ Rk s.t. f differentiable in g(X)
and g differentiable in X.

We remind that the chain rule has:

Jf◦g(X) = Jf (g(X))× Jg(X).

For i, j ∈ [1,m]× [1, k], express ∂fi◦g
∂xj

(X) using ∇fi(g(X)) and ∂g
∂xj

(X).

Just expand definitions and find ∂fi◦g
∂xj

(X) = ∇fi(g(X)) · ∂g∂xj
(X)

Exercise 1

1. Let M = (mi,j)i∈[1,l],j∈[1,k] =

m1,1 . . . m1,k

...
...

ml,1 . . . ml,k

 be an l, k-matrix with

real coefficients (i.e. a matrix of real numbers with l lines and k columns).

One considers the linear map: z :

{
Rk 7→ Rl
X 7→M ×X

. Compute Jz.

Letting X =

x1

...
xk

 we have z(X) =

z1(X)
...

zl(X)

 where

zi(X) =

k∑
j=1

mi,jxj .

Hence
∂zi
∂xj

= mi,j .

Then again,
Jz = M.

Exercise 2

Compute the Jacobian of the 3D relu activation function R : (x, y, z) 7→ (x ×
1x>0, y × 1y>0, z × 1z>0) in any point where it is differentiable.

3

Non differentiable in x iff x = 0. Non differentiable in y iff y = 0 and in z
iff z = 0. Otherwise notice only the diagonal is non-zero and distinguish cases
to find:

JR(x, y) =

1x>0 0 0
0 1y>0 0
0 0 1z>0



Excercise 3

We consider the following (neural network) function f , defined as f(P,Q,E) =
S(Q×R(P × E)) where:

• E ∈ R2 (input to the neural network).

• P =

p1,1 p1,2

p2,1 p2,2

p3,1 p3,2

 is a 2, 3 matrix (weights of the first layer).

• Q =

(
q1,1 q1,2 q1,3

q2,1 p2,2 q2,3

)
is a 3, 2 matrix (weights of the second layer).

• R is the relu function.

• S(x, y) = (S1(x, y), S2(x, y)) = (ex

ex+ey ,
ey

ex+ey) is the softmax normalizer.

f as written above is a function taking the matrices P and Q and the two
dimensional vector E to a two dimensional vector, but it can equivalently be seen
as a function R12×R2 7→ R2, where we gather the two matrices components (i.e.,
the parameters of the neural network) into one single 12 dimensional vector:
Θ = (p1,1, . . . , p3,2︸ ︷︷ ︸

describes P

, q1,1, . . . , q2,3︸ ︷︷ ︸
describes Q

).

For every fixed value of E, we now have a function fE : Θ 7→ fE(Θ) =
f(Θ, E). We first want to compute JfE . To this aim we’ll use several application
of the chain rule. Let us write zE(Θ) = P × E, gE(Θ) = R(zE(Θ)), and
z′E(Θ) = Q× gE(Θ).

1. Show that for any variable index x ∈ {p1,1, . . . , p3,2, q1,1, . . . , q2,3}, ∂fE∂x (Θ) =

JS(z′E(Θ))× ∂z′E
∂x (Θ). Each of the two rows given by ex. 0.

2. Show that
∂z′E
∂qi,j

(gE(Θ)) = gE(Θ)j ×
(
1i=1

1i=2

)
. Just expand and compute

partial derivatives.

3. Show that
∂z′E
∂pi,j

(Θ) = Q× ∂gE
∂pi,j

(Θ) By def. of partial derivatives,
∂z′E
∂pi,j

(Θ =
∂z′E�Q
∂pi,j

(P). z′E �Q is z′′E ◦ gE , where z′′E(X) = Q ×X. Apply exercice 1 +

chain rule.

4

4. Show that ∂gE
∂pi,j

(Θ) = JR(zE(Θ))× ∂zE
∂pi,j

(Θ). same as 1.

5. Show that ∂zE
∂pi,j

= ej ×

1i=1

1i=2

1i=3

, where E =

(
e1

e2

)
. Expand and compute.

6. We admit that JS =

(
S1(1− S1) −S1S2

−S1S2 S2(1− S2)

)
. We let E0 =

(
1
−1

)
, P0 = 3, 1

1, 0
−1, 2

 and Q0 =

(
1,−1, 3
−2, 5, 4

)
, hence the joint ‘flat’ vectorial representa-

tion of P0 and Q0 is Θ0 = (3, 1, 1, 0,−1, 2, 1,−1, 3,−2, 5, 4). Compute the
Jacobian JfE0

(Θ0) of fE0
at point Θ0.

From 5:

∂zE
∂p1,1

=

e1

0
0

 ∂zE
∂p1,2

=

e2

0
0


∂zE
∂p2,1

=

 0
e1

0

 ∂zE
∂p2,2

=

 0
e2

0


∂zE
∂p3,1

=

 0
0
e1

 ∂zE
∂p3,2

=

 0
0
e2


This is for arbitrary E, so for E0 = (1,−1), we get:

∂zE0

∂p1,1
=

1
0
0

 ∂zE0

∂p1,2
=

−1
0
0


∂zE0

∂p2,1
=

0
1
0

 ∂zE0

∂p2,2
=

 0
−1
0


∂zE0

∂p3,1
=

0
0
1

 ∂zE0

∂p3,2
=

 0
0
−1



Substituting values in definitions, we get zE0
(Θ0) = P0 × E0 =

 2
1
−3

.

Using exercice 2 we then obtain JR(zE0
)(Θ0) =

1, 0, 0
0, 1, 0
0, 0, 0

. Then question

5

4 yields:

∂gE0

∂p1,1
(Θ0) =

1
0
0

 ∂gE0

∂p1,2
(Θ0) =

−1
0
0


∂gE0

∂p2,1
(Θ0) =

0
1
0

 ∂gE0

∂p2,2
(Θ0) =

 0
−1
0


∂gE0

∂p3,1
(Θ0) =

0
0
0

 ∂gE0

∂p3,2
(Θ0) =

0
0
0


Question 3 has

∂z′E0

∂pi,j
(Θ0) = Q0 ×

∂gE0

∂pi,j
(Θ0). Pluging in the above values,

we find:
∂z′E0

∂p1,1
(Θ0) =

(
1
−2

)
∂z′E0

∂p1,2
(Θ0) =

(
−1
2

)
∂z′E0

∂p2,1
(Θ0) =

(
−1
5

)
∂z′E0

∂p2,2
(Θ0) =

(
1
−5

)
∂z′E0

∂p3,1
(Θ0) =

(
0
0

)
∂z′E0

∂p3,2
(Θ0) =

(
0
0

)

Substituting values in definitions, we get gE0
(Θ0) = R(zE0

(Θ0)) =

2
1
0

.

Then using q. 2, we get:

∂z′E0

∂q1,1
(Θ0) =

(
2
0

)
∂z′E0

∂q1,2
(Θ0) =

(
1
0

)
∂z′E0

∂q1,3
(Θ0) =

(
0
0

)
∂z′E0

∂q2,1
(Θ0) =

(
0
2

)
∂z′E0

∂q2,2
(Θ0) =

(
0
1

)
∂z′E0

∂q2,3
(Θ0) =

(
0
0

)

Finally, z′E0
(Θ0) = Q0×gE0

(Θ0) =

(
1
1

)
. So S1(z′E0

(Θ0)) = S2(z′E0
(Θ0)) =

e
2e = 1

2 . From the result we admitted on the jacobian of the softmax:

JS(z′E0
(Θ0)) =

(
1/4,−1/4
−1/4, 1/4

)
. Question 1 yields finally:

∂fE0

∂p1,1
(Θ0) =

(
3/4
−3/4

)
∂fE0

∂p1,2
(Θ0) =

(
−3/4
3/4

)
∂fE0

∂p2,1
(Θ0) =

(
−3/2
3/2

)
∂fE0

∂p2,2
(Θ0) =

(
3/2
−3/2

)
∂fE0

∂p3,1
(Θ0) =

(
0
0

)
∂fE0

∂p3,2
(Θ0) =

(
0
0

)
and

6

∂fE0

∂q1,1
(Θ0) =

(
1/2
−1/2

)
∂fE0

∂q1,2
(Θ0) =

(
1/4
−1/4

)
∂fE0

∂q1,3
(Θ0) =

(
0
0

)
∂fE0

∂q2,1
(Θ0) =

(
−1/2
1/2

)
∂fE0

∂q2,2
(Θ0) =

(
−1/4
1/4

)
∂fE0

∂q2,3
(Θ0) =

(
0
0

)
Which, all put together in one place, gives:

JFE0
(Θ0) =

(
3/4 −3/4 −3/2 3/2 0 0 1/2 1/4 0 −1/2 −1/4 0
−3/4 3/4 3/2 −3/2 0 0 −1/2 −1/4 0 1/2 1/4 0

)

7. We now consider performing one step of gradient descent using a sin-
gle positive training instance 〈E0,+〉 and negative log-likelihood loss.
The loss function at a given point Θ is thus l(Θ) = −ln(fE0 [1](Θ))
(where fE0 [1] = fE01 is the function computing only the first compo-
nent of fE0

). We execute the step from point Θ0. Compute the di-
rection of the update: ∇l(Θ0). From the chain rule, for any point Θ,
∇l(Θ) = − 1

fE0
[1](Θ)∇fE0

[1](Θ). Since ∇fE0
[1](Θ) is the first line of the

Jacobian of f , and fE0
[1]Θ0 = 1

2 we have:

∇l(Θ0) = −2×
(
3/4 −3/4 −3/2 3/2 0 0 1/2 1/4 0 −1/2 −1/4 0

)
=
(
−3/2 3/2 3 −3 0 0 −1 −1/2 0 1 1/2 0

)

7

