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The knowledge bottleneck

• Inference requires formalized knowledge about the 
world and about the meanings of words.

Which genetically caused connective tissue 
disorder has severe symptoms and complications 
regarding the aorta and skeletal features, and, very 
characteristically, ophthalmologic subluxation?

Marfan's is created by a defect of the gene that 
determines the structure of Fibrillin-11. One of the 
symptoms is displacement of one or both of the 
eyes' lenses. The most serious complications affect 
the cardiovascular system, especially heart valves 
and the aorta.



Lexical semantics

He's not pining! He's passed on! This 
parrot is no more! He has ceased to be! 
He's expired and gone to meet his 
maker! He's a stiff ! Bereft of life, he 
rests in peace! His metabolic processes 
are now history! He's off the twig! He's 
kicked the bucket, he's shuffled off his 
mortal coil, run down the curtain and 
joined the bleedin' choir invisible!! 
THIS IS AN EX-PARROT!!

Many words are synonymous or at least semantically similar.



Information Retrieval

• In Information Retrieval, we want to find differently 
phrased documents: 
‣ Query: “female astronauts” 

‣ Document: “In the history of the Soviet space program, 
there were only three female cosmonauts: Valentina 
Tereshkova, Svetlana Savitskaya, and Elena Kondakova.” 

• This will only work if system recognizes that 
“astronaut” and “cosmonaut” have similar 
meanings.



Machine Translation

• Knowledge also important to disambiguate 
polysemous words. 

• Famous example by Bar-Hillel (1960): 
‣ “The box is in the pen.” 

• Correct translation depends on sense of “pen”: 
‣ “Die Kiste ist im Stift.” 

‣ “Die Kiste ist im Pferch.”



Classical lexical semantics

• Polysemy: Word has two different meanings that are 
clearly related to each other. 
‣ School #1: institution at which students learn 

‣ School #2: building that houses school #1 

• Homonyny: Word has two different meanings that 
have no obvious relation to each other. 
‣ Bank #1: financial institution 

‣ Bank #2: land alongside a body of water



Word sense disambiguation

• Word sense disambiguation is the problem of tagging 
each word token with its word sense. 

• WSD accuracy depends on sense inventory;  
state of the art is above 90% on coarse-grained senses. 

• Techniques tend to combine supervised training on 
small amount of annotated data with unsupervised 
methods.



Classical lexical semantics
entity

physical object

artifact

structure

building complex

plant#1, 
works, 

industrial plant

living thing

organism

plant#2, 
flora, 

plant life

= hyponymy
same node = synonymyhttp://wordnet.princeton.edu/



Problem

• Hand-written thesauruses much too small. 
‣ English Wordnet: 117.000 synsets 

‣ GermaNet: 85.000 synsets 

• Number of word types in English Google n-gram 
corpus: > 1 million. 

• This is not how we can solve the query expansion 
problem 

• Learn lexical semantic knowledge automatically?



Experiment

• What is “bardiwac”? Some occurrences in corpus: 
‣ He handed her a glass of bardiwac. 

‣ Nigel staggered to his feet, face flushed from too much 
bardiwac. 

‣ Malbec, one of the lesser-known bardiwac grapes, responds 
well to Australia’s sunshine. 

‣ The drinks were delicious: blood-red bardiwac as well as 
light, sweet Rhenish.

(Stefan Evert, tutorial at NAACL 2010)

→ Bardiwac ist a red wine.



Distributional Semantics

• Basic idea (Harris 1951, Firth 1957):  
“You shall know a word by the company it keeps.” 

• Assumption: Semantically similar words tend to 
occur in the context of the same words. 
‣ “similar” as approximation of “synonymous” 

• Can observe “occur in the context of same words” 
on large unannotated corpora.
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through counts of context words occurring in the neighborhood of target
word instances. Take, as in the WSD example above, the n (e.g., 2000)
most frequent content words in a corpus as the set of relevant context words;
then count, for each word w, how often each of these context words occurred
in a context window of n before or after each occurrence of w. Fig. 108.4
shows the co-occurrence counts for a number of target words (columns),
and a selection of context words (rows) obtained from a 10% portion of the
British National Corpus (Clear 1993).

The resulting frequency pattern encodes information about the meaning
of w. According to the Distributional Hypothesis, we can model the semantic
similarity between two words by computing the similarity between their co-
occurrences with the context words. In the example of Fig. 108.4, the target
flower co-occurs frequently with the context words grow and garden, and
infrequently with production and worker. The target word tree has a similar
distribution, but the target factory shows the opposite co-occurrence pattern
with these four context words. This is evidence that trees and flowers are
more similar to each other than to factories.

Technically, we represent each word w as a vector in a high-dimensional

23

Co-occurrence matrix from BNC, from Koller & Pinkal 12

see who can grow the biggest flower. Can we buy some fibre, please
Abu Dhabi grow like a hot-house flower, but decided themselves to follow the

as a physical level. The Bach Flower Remedies are prepared from non-poisonous wild
a seed from which a strong tree will grow. This is the finest



Vector space model

fa
ct
or
y

fl
ow

er

tr
ee

p
la
n
t

w
at
er

fo
rk

grow 15 147 330 517 106 3
garden 5 200 198 316 118 17
worker 279 0 5 84 18 0
production 102 6 9 130 28 0
wild 3 216 35 96 30 0

Figure 108.4: Some co-occurrence vectors from the British National Corpus.

factory

flower

tree

plant

Figure 108.5: Graphical illustration of co-occurrence vectors.

through counts of context words occurring in the neighborhood of target
word instances. Take, as in the WSD example above, the n (e.g., 2000)
most frequent content words in a corpus as the set of relevant context words;
then count, for each word w, how often each of these context words occurred
in a context window of n before or after each occurrence of w. Fig. 108.4
shows the co-occurrence counts for a number of target words (columns),
and a selection of context words (rows) obtained from a 10% portion of the
British National Corpus (Clear 1993).

The resulting frequency pattern encodes information about the meaning
of w. According to the Distributional Hypothesis, we can model the semantic
similarity between two words by computing the similarity between their co-
occurrences with the context words. In the example of Fig. 108.4, the target
flower co-occurs frequently with the context words grow and garden, and
infrequently with production and worker. The target word tree has a similar
distribution, but the target factory shows the opposite co-occurrence pattern
with these four context words. This is evidence that trees and flowers are
more similar to each other than to factories.

Technically, we represent each word w as a vector in a high-dimensional

23

fa
ct
or
y

fl
ow

er

tr
ee

p
la
nt

w
at
er

fo
rk

grow 15 147 330 517 106 3
garden 5 200 198 316 118 17
worker 279 0 5 84 18 0
production 102 6 9 130 28 0
wild 3 216 35 96 30 0

Figure 108.4: Some co-occurrence vectors from the British National Corpus.

factory

flower

tree

plant

Figure 108.5: Graphical illustration of co-occurrence vectors.

through counts of context words occurring in the neighborhood of target
word instances. Take, as in the WSD example above, the n (e.g., 2000)
most frequent content words in a corpus as the set of relevant context words;
then count, for each word w, how often each of these context words occurred
in a context window of n before or after each occurrence of w. Fig. 108.4
shows the co-occurrence counts for a number of target words (columns),
and a selection of context words (rows) obtained from a 10% portion of the
British National Corpus (Clear 1993).

The resulting frequency pattern encodes information about the meaning
of w. According to the Distributional Hypothesis, we can model the semantic
similarity between two words by computing the similarity between their co-
occurrences with the context words. In the example of Fig. 108.4, the target
flower co-occurs frequently with the context words grow and garden, and
infrequently with production and worker. The target word tree has a similar
distribution, but the target factory shows the opposite co-occurrence pattern
with these four context words. This is evidence that trees and flowers are
more similar to each other than to factories.

Technically, we represent each word w as a vector in a high-dimensional

23

Vectors in a 
high-dimensional 

vector space

1 dimension per context word 
(here: 6 dimensions) 

Picture simplifies to 2 dimensions, 
is only schematic.



Cosine similarity

• Take angle between vectors as measure of similarity. 
‣ (correctly) ignores length of vectors = frequency of words 

‣ similar angle = similar proportion of context words 

• Cosine of angle is easy to compute. 
‣ cos = 1 means angle = 0°, i.e. very similar 

‣ cos = 0 means angle = 90°, i.e. very dissimilar
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cos(tree, flower) = 0.75, i.e. 40° 
cos(tree, factory) = 0.05, i.e. 85°



More complex features

• Co-occurrence in string can over-estimate whether the 
two words really belong together. 

• Fix this with more complex features which e.g. capture 
grammatical relations between words (Lin 98). 
‣ instead of counting “flower appears in window 

of length 7 around Abu Dhabi”, 

‣ count “flower occurs as subject of grow”

the Qataris had watched Abu Dhabi grow  
like a hot-house flower, but decided

Introduction The distributional hypothesis

Geometric interpretation

I row vector xdog
describes usage of
word dog in the
corpus

I can be seen as
coordinates of point
in n-dimensional
Euclidean space

I illustrated for two
dimensions:
get and use

I xdog = (115, 10) ●
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Dimensionality reduction

• Raw co-occurrence vectors have very high 
dimension (one for each context word). 

• Typical approach: dimensionality reduction. 
‣ improves efficiency; can filter out random noise 

• For instance, Latent Semantic Analysis reduces 
dimensionality via singular value decomposition.

co-occ matrix = * *



Results

Introduction The distributional hypothesis

Semantic distances

I main result of distributional
analysis are “semantic”
distances between words

I typical applications
I nearest neighbours
I clustering of related words
I construct semantic map
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German cooking words

word2vec embeddings, Theresa Schmidt’s BSc thesis, 2020

quantities

temperatures

consistenciesutensils

durations

liquid ingredients

vegetables

activities

other ingredients



Results

(results of Lin 98, from J&M)

hope (N): 
optimism 0.141, chance 0.137, expectation 0.136, prospect 0.126, 
dream 0.119, desire 0.118, fear 0.116, effort 0.111, confidence 0.109, promise 0.108 

hope(V):  
would like 0.158, wish 0.140, plan 0.139, say 0.137, believe 0.135, think 0.133, 
agree 0.130, wonder 0.130, try 0.127, decide 0.125 

brief (N):  
legal brief 0.139, affidavit 0.103, filing 0.098, petition 0.086, 
document 0.083, argument 0.083, letter 0.079, rebuttal 0.078, memo 0.077, article 0.076 

brief (A):  
lengthy 0.256, hour-long 0.191, short 0.173, extended 0.163, frequent 0.162, 
recent 0.158, short-lived 0.155, prolonged 0.149, week-long 0.149, occasional 0.146



Problems

• Similarity = synonymy? 
‣ Antonyms are basically as distributionally similar 

as synonyms:  

• Distributional similarity is not referential similarity. 
Distinguishing synonyms from antonyms is 
notoriously hard problem.

brief (A): lengthy 0.256, hour-long 0.191, short 0.173, extended 0.163, frequent 0.162, 
recent 0.158, short-lived 0.155, prolonged 0.149, week-long 0.149, occasional 0.146



Word embeddings for NNs

neural named entity recognizer (schematic)

Neural networks cannot directly read words.  
Need to map each word to a vector, called a word embedding.



Word embeddings
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Word embedding matrix 
•  IniGalize%all%word%vectors%randomly%to%form%a%word%embedding%
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• One-hot encoding: Every word a 0-1 vector. 

• Word embeddings: n x |V| matrix L which maps each 
one-hot encoding into n-dimensional vector.



• Idea: try to predict the missing word in a given 
context. 

• Train neural network to learn “distributional” 
vectors for all the words.

Word embeddings

cat sat ???? a mat

on



CBOW

where C is the number of words in the context, w1, · · · , wC are the words the in the context,
and vw is the input vector of a word w. The loss function is

E = = � log p(wO|wI,1, · · · , wI,C) (19)

= �uj⇤ + log
VX

j0=1

exp(uj0) (20)

= �v
0
wO

T · h+ log
VX

j0=1

exp(v0
wj

T · h) (21)

which is the same as (7), the objective of the one-word-context model, except that h is
di↵erent, as defined in (18) instead of (1).

Input layer

Hidden layer Output layer

WV×N

WV×N

WV×N

W'N×V yjhix2k

x1k

xCk

C×V-dim

N-dim
V-dim

Figure 2: Continuous bag-of-word model

The update equation for the hidden!output weights stay the same as that for the
one-word-context model (11). We copy it here:

v
0
wj

(new) = v
0
wj

(old) � ⌘ · ej · h for j = 1, 2, · · · , V. (22)

Note that we need to apply this to every element of the hidden!output weight matrix for
each training instance.

6

= continuous bag of words

one-hot encodings 
of words at positions 

-2, -1, +1, +2

“one-hot encoding” 
of word at position 0 

(see next slide)

word embedding matrix L

similarly, skip-gram model predicts context from word

(word2vec; Mikolov et al. 2013; Levy & Goldberg 2014: math. parallels to SVD)



Results

Table 6: Comparison of models trained using the DistBelief distributed framework. Note that

training of NNLM with 1000-dimensional vectors would take too long to complete.

Model Vector Training Accuracy [%] Training time
Dimensionality words [days x CPU cores]

Semantic Syntactic Total
NNLM 100 6B 34.2 64.5 50.8 14 x 180
CBOW 1000 6B 57.3 68.9 63.7 2 x 140
Skip-gram 1000 6B 66.1 65.1 65.6 2.5 x 125

Table 7: Comparison and combination of models on the Microsoft Sentence Completion Challenge.

Architecture Accuracy [%]
4-gram [32] 39
Average LSA similarity [32] 49
Log-bilinear model [24] 54.8
RNNLMs [19] 55.4
Skip-gram 48.0
Skip-gram + RNNLMs 58.9

estimate since the data center machines are shared with other production tasks, and the usage can
fluctuate quite a bit. Note that due to the overhead of the distributed framework, the CPU usage of
the CBOW model and the Skip-gram model are much closer to each other than their single-machine
implementations. The result are reported in Table 6.

4.5 Microsoft Research Sentence Completion Challenge

The Microsoft Sentence Completion Challenge has been recently introduced as a task for advancing
language modeling and other NLP techniques [32]. This task consists of 1040 sentences, where one
word is missing in each sentence and the goal is to select word that is the most coherent with the
rest of the sentence, given a list of five reasonable choices. Performance of several techniques has
been already reported on this set, including N-gram models, LSA-based model [32], log-bilinear
model [24] and a combination of recurrent neural networks that currently holds the state of the art
performance of 55.4% accuracy on this benchmark [19].

We have explored the performance of Skip-gram architecture on this task. First, we train the 640-
dimensional model on 50M words provided in [32]. Then, we compute score of each sentence in
the test set by using the unknown word at the input, and predict all surrounding words in a sentence.
The final sentence score is then the sum of these individual predictions. Using the sentence scores,
we choose the most likely sentence.

A short summary of some previous results together with the new results is presented in Table 7.
While the Skip-gram model itself does not perform on this task better than LSA similarity, the scores
from this model are complementary to scores obtained with RNNLMs, and a weighted combination
leads to a new state of the art result 58.9% accuracy (59.2% on the development part of the set and
58.7% on the test part of the set).

5 Examples of the Learned Relationships

Table 8 shows words that follow various relationships. We follow the approach described above: the
relationship is defined by subtracting two word vectors, and the result is added to another word. Thus
for example, Paris - France + Italy = Rome. As it can be seen, accuracy is quite good, although
there is clearly a lot of room for further improvements (note that using our accuracy metric that

9

(Mikolov et al. 2013)

Accuracy on MS Sentence Completion Task

Was she his [client | musings | discomfigure | choice | opportunity],  
his friend, or his mistress? 

All red-headed men who are above the age of [800 | seven | twenty-one | 
1,200 | 60,000] years are eligible. 

That is his [generous | mother’s | successful | favorite | main] fault,  
but on the whole he’s a good worker.



Results

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-

gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker

Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan

copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack

Microsoft - Windows Google: Android IBM: Linux Apple: iPhone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs

Japan - sushi Germany: bratwurst France: tapas USA: pizza

assumes exact match, the results in Table 8 would score only about 60%). We believe that word
vectors trained on even larger data sets with larger dimensionality will perform significantly better,
and will enable the development of new innovative applications. Another way to improve accuracy is
to provide more than one example of the relationship. By using ten examples instead of one to form
the relationship vector (we average the individual vectors together), we have observed improvement
of accuracy of our best models by about 10% absolutely on the semantic-syntactic test.

It is also possible to apply the vector operations to solve different tasks. For example, we have
observed good accuracy for selecting out-of-the-list words, by computing average vector for a list of
words, and finding the most distant word vector. This is a popular type of problems in certain human
intelligence tests. Clearly, there is still a lot of discoveries to be made using these techniques.

6 Conclusion

In this paper we studied the quality of vector representations of words derived by various models on
a collection of syntactic and semantic language tasks. We observed that it is possible to train high
quality word vectors using very simple model architectures, compared to the popular neural network
models (both feedforward and recurrent). Because of the much lower computational complexity, it
is possible to compute very accurate high dimensional word vectors from a much larger data set.
Using the DistBelief distributed framework, it should be possible to train the CBOW and Skip-gram
models even on corpora with one trillion words, for basically unlimited size of the vocabulary. That
is several orders of magnitude larger than the best previously published results for similar models.

An interesting task where the word vectors have recently been shown to significantly outperform the
previous state of the art is the SemEval-2012 Task 2 [11]. The publicly available RNN vectors were
used together with other techniques to achieve over 50% increase in Spearman’s rank correlation
over the previous best result [31]. The neural network based word vectors were previously applied
to many other NLP tasks, for example sentiment analysis [12] and paraphrase detection [28]. It can
be expected that these applications can benefit from the model architectures described in this paper.

Our ongoing work shows that the word vectors can be successfully applied to automatic extension
of facts in Knowledge Bases, and also for verification of correctness of existing facts. Results
from machine translation experiments also look very promising. In the future, it would be also
interesting to compare our techniques to Latent Relational Analysis [30] and others. We believe that
our comprehensive test set will help the research community to improve the existing techniques for
estimating the word vectors. We also expect that high quality word vectors will become an important
building block for future NLP applications.

10

(on analogy task)

(vector with highest cosine similarity to L(Paris) - L(France) + L(Italy) etc.)



Contextualized word embeddings

http://jalammar.github.io/illustrated-bert/



ELMo

Let’s stick to improvisation

predictions

word embeddings

BiLSTM 1

BiLSTM 2

(Peters et al. 2018)

Alternatively, use attention; currently everyone is using BERT.



Contextualization really helps

(Lindemann et al., ACL 2019)

• First semantic parser that does well across all six major graphbanks. 

• Established new states of the art through use of pretrained BERT embeddings. 

• Small improvements through multi-task learning on multiple graphbanks.

DM PAS PSD EDS AMR 2015 AMR 2017
id F ood F id F ood F id F ood F Smatch F EDM Smatch F Smatch F

Groschwitz et al. (2018) - - - - - - - - 70.2 71.0
Lyu and Titov (2018) - - - - - - - - 73.7 74.4 ±0.16

Zhang et al. (2019) - - - - - - - - - 76.3 ±0.1

Peng et al. (2017) Basic 89.4 84.5 92.2 88.3 77.6 75.3 - - - -
Dozat and Manning (2018) 93.7 88.9 94.0 90.8 81.0 79.4 - - - -
Buys and Blunsom (2017) - - - - - - 85.5 85.9 60.1 -
Chen et al. (2018) - - - - - - 90.91,2 90.41 - -

This paper (GloVe) 90.4 ±0.2 84.3 ±0.2 91.4 ±0.1 86.6 ±0.1 78.1 ±0.2 74.5 ±0.2 87.6 ±0.1 82.5 ±0.1 69.2 ±0.4 70.7 ±0.2

This paper (BERT) 93.9 ±0.1 90.3 ±0.1 94.5 ±0.1 92.5 ±0.1 82.0 ±0.1 81.5 ±0.3 90.1 ±0.1 84.9 ±0.1 74.3 ±0.2 75.3 ±0.2

Peng et al. (2017) Freda1 90.0 84.9 92.3 88.3 78.1 75.8 - - - -
Peng et al. (2017) Freda3 90.4 85.3 92.7 89.0 78.5 76.4 - - - -

This paper, MTL (GloVe) 91.2 ±0.1 85.7 ±0.0 92.2 ±0.2 88.0 ±0.3 78.9 ±0.3 76.2 ±0.4 88.2 ±0.1 83.3 ±0.1 (70.4)3 ±0.2 71.2 ±0.2

This paper, MTL (BERT) 94.1 ±0.1 90.5 ±0.1 94.7 ±0.1 92.8 ±0.1 82.1 ±0.2 81.6 ±0.1 90.4 ±0.1 85.2 ±0.1 (74.5)3 ±0.1 75.3 ±0.1

Table 1: Semantic parsing accuracies (id = in domain test set; ood = out of domain test set).

runs and standard deviations). Our results are com-
petitive across the board, and set a new state of the
art for EDS Smatch scores (Cai and Knight, 2013)
among EDS parsers which are not trained on gold
syntax information. Our EDM score (Dridan and
Oepen, 2011) on EDS is lower, partially because
EDM evaluates the parser’s ability to align nodes
with multi-token spans; our supertagger can only
align nodes with individual tokens, and we add
alignment spans heuristically.

To test the impact of the grouping and source-
naming heuristics from Section 3.2, we experi-
mented with randomized heuristics on DM. The
F-score dropped by up to 18 points.

BERT. The use of BERT embeddings is highly
effective across the board. We set a new state of
the art (without gold syntax) on all graphbanks
except AMR 2017; note that Zhang et al. (2019)
also use BERT. The improvement is particularly
pronounced in the out-of-domain evaluations, illus-
trating BERT’s ability to transfer across domains.

Multi-task learning. Multi-task learning has
been shown to substantially improve accuracy on
various semantic parsing tasks (Stanovsky and Da-
gan, 2018; Hershcovich et al., 2018; Peng et al.,
2018). It is particularly easy to apply here, because
we have converted all graphbanks into a uniform
format (supertags and AM dependency trees).

We explored several multi-task approaches dur-
ing development, namely Freda (Daumé III, 2007;
Peng et al., 2017), the Freda generalization of Lu
et al. (2016) and the method of Stymne et al. (2018).
We found Freda to work best and use it for evalua-

1Uses gold syntax information from the HPSG DeepBank
annotations at training time.

2Weiwei Sun, p.c.
3Not comparable to other AMR 2015 results because train-

ing data contained AMR 2017.

tion. Our setup compares most directly to Peng et
al.’s “Freda1” model, concatenating the output of a
graphbank-specific BiLSTM with that of a shared
BiLSTM, using graphbank-specific MLPs for su-
pertags and edges, and sharing input embeddings.

We pooled all corpora into a multi-task training
set except for AMR 2015, since it is a subset of
AMR 2017. We also added the English Universal
Dependency treebanks (Nivre et al., 2018) to our
training set (without any supertags). The results
on the test dataset are shown in Table 1 (bottom).
With GloVe, multi-task learning led to substantial
improvements; with BERT the improvements are
smaller but still noticeable.

5 Conclusion

We have shown how to perform accurate seman-
tic parsing across a diverse range of graphbanks.
We achieve this by training a compositional neu-
ral parser on graphbank-specific tree decomposi-
tions of the annotated graphs and combining it with
BERT and multi-task learning.

In the future, we would like to extend our ap-
proach to sembanks which are annotated with dif-
ferent types of semantic representation, e.g. SQL
(Yu et al., 2018) or DRT (Abzianidze et al., 2017).
Furthermore, one limitation of our approach is that
the latent AM dependency trees are determined by
hand-written heuristics, which must be redeveloped
for each new graphbank. We will explore latent-
variable models to learn the dependency trees auto-
matically.
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Conclusion

• “Knowledge bottleneck” is a serious problem in 
computational semantics. Try to overcome by 
modeling information about word meaning. 

• Classical task: word sense disambiguation (WSD). 

• Distributional methods: 
‣ co-occurrence-based 

‣ neural (word embeddings, e.g. word2vec/GloVe) 

‣ latest cry: context-dependent word embeddings,  
e.g. ELMo, BERT


