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Computing with meanings

e Ancient problem: inference.

» How can we tell whether a sentence follows from others?

» Can we compute this automatically?

All men are mortal.

Socrates is a man.

Therefore, Socrates is mortal.

" Aristotle




Formal meaning representations

e Aristotle with more modern tools (ca. 2000):

» Compute meaning representation in some formal
language (e.g. predicate logic)

» so that it captures something relevant about the sentence’s
meaning (e.g. its truth conditions)

» and then use reasoning tools for the formal language
(e.g. a theorem prover for predicate logic)

All men are mortal. vx. man(x) > mortal(x)

Socrates is a man. man(s)

Therefore, Socrates is mortal. mortal(s)




Compositional semantics

S>NP VP
VP >V NP
NP > Det N
NP - John

V - eats

Det > a

N - sandwich

T

when you apply this
syntax rule ...

(§) =(NP)KVP))

(VP) = Ay (NPY(KV)(y))
(NP) = (Det)({N))

(NP) = AP P(j*)

(V) =eat’

(Det) = APAQ3x P(x) A Q(x)
(N) =sw’

\

... construct A-term for parent
from A-terms for children like this

Montague



Example

(AP P(j*)) (Ay 3x sw’(x) Aeat’(y)(x))

> (Ay Ix sw’'(x) Aeat’(y)(x))(*)
>p Ix sw'(x) Aeat’ (j*)(x)

AP P(j*) Ay (AQ3x sw’'(x) A Q(x))(eat'(y))
k\ >g Ay 3x sw'(x) Aeat’(y)(x)
(APAQ3x P(x) A Q(x))(sw)
/\\\ 5 B AQ3Ix sw(x) A Q(x)
eat’ € m- -
\~x |
SW

&
APAQ3x P(x) A Q(x)



Semantic parsing

e Open issue in classical semantics construction:
Where do we get large grammar that supports it?

e Current trend in CL is semantic parsing:
learn mapping from sentence to formal meaning
representation using statistical methods.

e E.g. from Geoquery corpus (880 sentences):

What is the smallest state by area?

answer(xi1, smallest(xz, state(xi1), area(xi, x2)))




With synchronous grammars

e Use a synchronous grammar (= SCFG) to
simultaneously generate strings and A-expressions.

Q > what is the F
F > smallest F F
F > state

F > by area

Q
T

what 1is the F

T

smallest F F

N

state by area

Q > answer(xy, F(x1))

F > Ax; smallest(xz, F(x1), F(x1, X2))
F > Ax; state(x:)

F > Ax1 Ax; area(Xx1, X2)

Q
B N

answer (1, F (1))

] T

Azxy.smallest(zo, F (x1), F

Azristate(xy) AxiAzoarea(ry, x2)



Wong & Mooney

what is the [smallest|state|by area

Where do unaligned words belong?

" “word” alignments:
Q > whatisthe F | F - smallestF '=
Q> whatF | F- isthe smallest F

answer(z, F )

smallest(xs, F F )

s
------

state(x1)|| area(x1, x2)

Assumptions:
- alignments between words and nodes
- unambiguous structure of meaning representation



Combinatory categorial grammar

John eats a big sandwich
NP  (S\NP)/NP NP/N  N/N N
>
N
>
NP
>
S\NP
<




Semantics in CCG

X:a X/Y: f Y/Z: g X/IY:f  Y\Z:g
>T >B >Bx
Y/(Y\X): APP(a) X/Z: Ax.f(g(x)) X\Z: Ax.f(g(x))
X:a Y\Z: ¢ X\Y: f Y/Z:g  X\Y:f
N/X) APP@) Xz g XIZ @) o

John
NP: h* eats
>T :
S/(S\NP): APP(h*) (S\NP)/NP: eat’ a sandwich
>B
S/INP: Ax.(APP(h*))(eat’(x)) =p Ax.eat (x)(h*) NP: sw’

S: (Ax.eat’(x)(h*))(sw’) = eat’(sw’)(h*)



Zettlemoyer & Collins

GENLEX: build candidates for lexicon entries

Rules Categories produced from logical form
Input Trigger Output Category arg max(Az.state(x) A borders(z, texas), A\x.size(x))
constant ¢ NP :c NP :texas
arity one predicate p1 N : Ax.p1(x) N : \zx.state(x)
arity one predicate p S\NP : Ax.p1(x) S\NP : Ax.state(x)
arity two predicate po (S\INP)/NP : Ax.\y.p2(y, x) (S\INP)/NP : Ax.\y.borders(y, x)
arity two predicate po (S\NP)/NP : \x.\y.p2(z,y) (S\NP)/NP : \x.\y.borders(x,y)
arity one predicate p N/N : Ag.Ax.p1(x) A g(x) N/N : Ag.Ax.state(x) N g(x)
literal with arity two predicate po . .
and constant second argument c N/N : Ag.Ax.p2(x,c) A g(x) N/N : Ag.Ax.borders(xz,texas) N g(x)
arity two predicate po (N\N)/NP : Ax.Ag.\y.p2(x,y) A g(x) (N\N)/NP : Ag.\x.\y.borders(x,y) A g(x)
an arg max / min with second _ : _ :
argument arity one function f NP/N : Ag.argmax / min(g, Ax.f(x)) NP/N : Ag.arg max(g, Ax.size(x))
an arity one _ _ :
numeric-ranged function f S/NP : \x.f(x) S/NP : \x.size(x)




Log-linear probability models

e Define probability of parse tree in terms of features:

6Q-f(t,w)
P(t ‘ w) — Zt’ ef-f(t w)

where 0 - f(t,w) = 01 - fi(t,w) + ... + 0, - fu(t,w)

e Features f(t,w) can capture arbitrary properties of
t and w.

» Here: Each feature counts uses of one grammar rule.

e Train weight vector 6 from data.



Zettlemoyer & Collins

overall learning algorithm

Algorithm:
ebFort=1...T

Step 1: (Lexical generation)
e Fort=1...n:
— Set A = Ag U GENLEX(S@ Lz)
— Calculate 7 = PARSE(S;, L;, A, 0°1).
— Define A; to be the set of lexical entries in 7.
o Set Ay =AoUlJ,_; \i
Step 2: (Parameter Estimation)
o Set 0" = ESTIMATE (A, E,0% 1)




Evaluation results

System Variable Free Lambda Calculus
Rec. Pre. F1 | Rec. Pre. F1
Cross Validation Results
KRISP | 71.7 93.3 81.1 — — —
WASP | 74.8 87.2 80.5 — — —
Lu08 81.5 89.3 85.2 — — —
A-WASP — — — | 86.6 92.0 8§9.2 |
Independent Tegt Set
ZC05 — — - [179.3 96.3 87.0]
ZCO7 — — — 86.1 91.6 8&8.8
UBL 814 894 85.2| 85.0 94.1 89.3
UBL-s 84.3 852 84.7| 87.9 885 88.2

(on Geoquery 880 corpus)



Abstract Meaning Representations

e Pros and cons of Geoquery:

» semantic representations are trees — (too) easy

» very small

e Since 2014, much larger corpora available:
~40k AMRs, graphs as semantic representations.

“I don’t want anyone to read my book carelessly.”




Dependency-style AMR parsing

“The boy wants to visit New York City.”

Concept Identification: determine atomic graph for each word.

Relation Identification: add all edges with positive weight; then repeatedly
add least negative edge that connects subgraphs.

JAMR; Flanigan et al. 2014



Issues with JAMR

JAMR can draw edge between any two nodes;
syntactic structure of sentence used only indirectly.

Semantic representations for words don't know
anything about their semantic arguments.

Edges for control verbs added arbitrarily, not
because linguistic principle of control discovered.

No notion of compositionality!



Compositional AMR Parsing

/A PPS\
APPv G'writer
/ \ bottom-up>
evaluation
GIWant /MODm\
G'sleep GIsound
A
oY)
k=
&
qv}
o

"The writer wants to sleep soundly.”

(Groschwitz et al., ACL 2018)



AM algebra

Two operations for combining s-graphs:
Apply (= head + complement), Modify (= head + modifier).

APP( & X% , & ) = g X%
COMCOMCS o €D

=

VN

ARGO .@
manner[ >
) ——

|
4,900

\)0@\9

APP and MOD can be expressed in terms of rename, forget, merge.

(Groschwitz et al., IWCS 2017; inspired by Copestake et al. 2001)



AM terms

Cant 3 B, S >
o
N 7, ARGO
< >
& 3

S

P o R/
. — 5 P2 & %
AP IDV writer Q ks St
7N
G'want sleep

t{ (= tree of 01?_/ ion symbols) value (= s-graph)

S R/
Y oY
kS >

,

ARGO

(Groschwitz et al., IWCS 2017)



Approach

e Convert (string, graph) training data into
(string, supertags + dependencies) training data.

e Train neural supertagger + dependency parser
to assign scores to supertags + dependencies.

» easier than predicting the whole graph; compositional!

e At evaluation time, compute highest-scoring
well-typed dependency tree.

» well-typedness requirement makes this NP-complete

» solve approximately with CKY-style parsing algorithm



Converting training data

the writer wants to sleep soundly

G MOD,,

/\

sleep sound

want

“The writer wants to sleep soundly”

the writer wants to sleep soundly

APPq APP, MODy

N/ NN

The writer wants to sleep soundly

L Guritr Gwant L Gsleep Gsoundly

(Groschwitz et al., ACL 2018)



Neural model

edge labels

supertagger

2-layer BiLSTM

w(2 > n) = log P(edge from 2 > n | x) is score for this edge.
Analogously for supertags and edge labels.

(ctf. Lewis et al. 2014; Kiperwasser & Goldberg 2016)



Parsing across graphbanks

DM PAS PSD EDS AMR 2015 AMR 2017

id F ood F id F ood F id F ood F Smatch F  EDM Smatch F Smatch F
Groschwitz et al. (2018) - - - - - - - - 70.2 71.0
Lyu and Titov (2018) - - - - - - - - 73.7 74.4 £0.16
Zhang et al. (2019) - - - - - - - - - 76.3 +0.1
Peng et al. (2017) Basic 89.4 84.5 92.2 88.3 77.6 75.3 - - - -
Dozat and Manning (2018) 93.7 88.9 94.0 90.8 81.0 79.4 - - - -
Buys and Blunsom (2017) - - - - - - 85.5 85.9 60.1 -
Chen et al. (2018) - - - - - - 90.9!:2 90.4! - -
This paper (GloVe) 904 +02 843 +02 914 +01 86.64+0.1 78.1+02 745+02 87.64+01 82.5+01 69.2+04 70.7 0.2
This paper (BERT) 93.9 +0.1 90.3+0.1 94.5+01 92.5+01 82.0+0.1 81.5+03 90.14+01 84.9+01 74.3+0.2 75.3 +0.2
Peng et al. (2017) Fredal 90.0 84.9 92.3 88.3 78.1 75.8 - - - -
Peng et al. (2017) Freda3 90.4 85.3 92.7 89.0 78.5 76.4 - - - -
This paper, MTL (GloVe) 912 40.1 85.7 00 922402 88.0403 789 +03 76.2+04 882401 83.3+01 (70.4)3 £02 71.2+02
This paper, MTL (BERT)  94.1 0.1 90.5 +0.1 94.7 +0.1 92.8 +0.1 82.1402 81.6+01 90.4+01 852+01 (74.5)3 +01 75.3 +0.1

o First semantic parser that does well across all six major graphbanks.
o Established new states of the art through use of pretrained BERT embeddings.

o Small improvements through multi-task learning on multiple graphbanks.

(Lindemann et al., ACL 2019)



Conclusion

Challenge in compositional semantic construction:
Where do we get large-scale grammars?

Semantic parsing: Learn such grammars from
corpora with semantic annotations.

» GeoQuery: small corpus of trees

» AMRBank: new hotness

Very active research topic right now.



