Semantic parsing

Computational Linguistics

Alexander Koller

28 January 2020

Computing with meanings

- Ancient problem: inference.
- How can we tell whether a sentence follows from others?
- Can we compute this automatically?

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

Formal meaning representations

- Aristotle with more modern tools (ca. 2000):
- Compute meaning representation in some formal language (e.g. predicate logic)
- so that it captures something relevant about the sentence's meaning (e.g. its truth conditions)
- and then use reasoning tools for the formal language (e.g. a theorem prover for predicate logic)

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

$$
\begin{aligned}
& \forall x \cdot \operatorname{man}(x) \rightarrow \operatorname{mortal}(x) \\
& \operatorname{man}(\mathrm{s})
\end{aligned}
$$

mortal(s)

Compositional semantics

$$
\begin{array}{ll}
\mathrm{S} \rightarrow \mathrm{NP} \text { VP } & \langle\mathrm{S}\rangle=\langle\mathrm{NP}\rangle(\langle\mathrm{VP}\rangle) \\
\mathrm{VP} \rightarrow \mathrm{~V} \text { NP } & \langle\mathrm{VP}\rangle=\lambda \mathrm{y}\langle\mathrm{NP}\rangle(\langle\mathrm{V}\rangle(\mathrm{y})) \\
\mathrm{NP} \rightarrow \text { Det N } & \langle\mathrm{NP}\rangle=\langle\operatorname{Det}\rangle(\langle\mathrm{N}\rangle) \\
\mathrm{NP} \rightarrow \text { John } & \langle\mathrm{NP}\rangle=\lambda \mathrm{P} P\left(\mathrm{j}^{*}\right) \\
\mathrm{V} \rightarrow \text { eats } & \langle\mathrm{V}\rangle=\text { eat }^{\prime} \\
\text { Det } \rightarrow \text { a } & \langle\text { Det }\rangle=\lambda \mathrm{P} \lambda \mathrm{Q} \exists \mathrm{xP}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x}) \\
\mathrm{N} \rightarrow \text { sandwich } & \langle\mathrm{N}\rangle=\mathrm{sw}^{\prime}
\end{array}
$$

\dagger

when you apply this syntax rule ...
... construct λ-term for parent from λ-terms for children like this

Example

Semantic parsing

- Open issue in classical semantics construction: Where do we get large grammar that supports it?
- Current trend in CL is semantic parsing: learn mapping from sentence to formal meaning representation using statistical methods.
- E.g. from Geoquery corpus (880 sentences):

What is the smallest state by area?
$\operatorname{answer}\left(x_{1}, \operatorname{smallest}\left(x_{2}, \operatorname{state}\left(x_{1}\right), \operatorname{area}\left(x_{1}, x_{2}\right)\right)\right)$

With synchronous grammars

- Use a synchronous grammar ($\approx \mathrm{SCFG}$) to simultaneously generate strings and λ-expressions.

$$
\begin{array}{l|l}
\mathrm{Q} \rightarrow \text { what is the } \mathrm{F} & \mathrm{Q} \rightarrow \operatorname{answer}\left(\mathrm{x}_{1}, \mathrm{~F}\left(\mathrm{x}_{1}\right)\right) \\
\mathrm{F} \rightarrow \text { smallest } \mathrm{F} & \mathrm{~F} \rightarrow \lambda \mathrm{x}_{1} \operatorname{smallest}\left(\mathrm{x}_{2}, \mathrm{~F}\left(\mathrm{x}_{1}\right), \mathrm{F}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right) \\
\mathrm{F} \rightarrow \text { state } & \mathrm{F} \rightarrow \lambda \mathrm{x}_{1} \operatorname{state}\left(\mathrm{x}_{1}\right) \\
\mathrm{F} \rightarrow \text { by area } & \mathrm{F} \rightarrow \lambda \mathrm{x}_{1} \lambda \mathrm{x}_{2} \operatorname{area}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
\end{array}
$$

Wong \& Mooney

Where do unaligned words belong?
$\mathrm{Q} \rightarrow$ what is the $\mathrm{F} \mid \mathrm{F} \rightarrow$ smallest F $\mathrm{Q} \rightarrow$ what $\mathrm{F} \quad \mathrm{F} \rightarrow$ is the smallest F

Assumptions:

- alignments between words and nodes
- unambiguous structure of meaning representation

Combinatory categorial grammar

Semantics in CCG

$$
\begin{array}{cll}
\frac{\mathrm{X}: a}{\mathrm{Y} /(\mathrm{Y} \backslash \mathrm{X}): \lambda P \cdot P(a)}>\mathrm{T} & \frac{\mathrm{X} / \mathrm{Y}: f \quad \mathrm{Y} / \mathrm{Z}: g}{\mathrm{X} / \mathrm{Z}: \lambda x \cdot f(g(x))}>\mathrm{B} & \frac{\mathrm{X} / \mathrm{Y}: f \quad \mathrm{Y} \backslash \mathrm{Z}: g}{\mathrm{X} \backslash \mathrm{Z}: \lambda x . f(g(x))}>\mathrm{Bx} \\
\frac{\mathrm{X}: a}{\mathrm{Y} \backslash(\mathrm{Y} / \mathrm{X}): \lambda P \cdot P(a)}<\mathrm{T} & \frac{\mathrm{Y} \backslash \mathrm{Z}: g \quad \mathrm{X} \backslash \mathrm{Y}: f}{\mathrm{X} \backslash \mathrm{Z}: \lambda x . f(g(x))}<\mathrm{B} & \frac{\mathrm{Y} / \mathrm{Z}: g \quad \mathrm{X} \mid \mathrm{Y}: f}{\mathrm{X} / \mathrm{Z}: \lambda x . f(g(x))}<\mathrm{Bx}
\end{array}
$$

Zettlemoyer \& Collins

GENLEX: build candidates for lexicon entries

Rules		Categories produced from logical form $\arg \max (\lambda x . \operatorname{state}(x) \wedge \operatorname{borders}(x$, texas $), \lambda x . \operatorname{size}(x))$
Input Trigger	Output Category	
constant c	$N P: c$	$N P:$ texas
arity one predicate p_{1}	$N: \lambda x . p_{1}(x)$	$N: \lambda x . s t a t e(x)$
arity one predicate p_{1}	$S \backslash N P: \lambda x . p_{1}(x)$	$S \backslash N P: \lambda x . s t a t e(x)$
arity two predicate p_{2}	$(S \backslash N P) / N P: \lambda x . \lambda y \cdot p_{2}(y, x)$	$(S \backslash N P) / N P: \lambda x . \lambda y$ borders (y, x)
arity two predicate p_{2}	$(S \backslash N P) / N P: \lambda x . \lambda y \cdot p_{2}(x, y)$	$(S \backslash N P) / N P: \lambda x . \lambda y . \operatorname{borders}(x, y)$
arity one predicate p_{1}	$N / N: \lambda g \cdot \lambda x \cdot p_{1}(x) \wedge g(x)$	$N / N: \lambda g . \lambda x . s t a t e(x) \wedge g(x)$
literal with arity two predicate p_{2} and constant second argument c	$N / N: \lambda g \cdot \lambda x \cdot p_{2}(x, c) \wedge g(x)$	$N / N: \lambda g . \lambda x . b o r d e r s(x$, texas $) \wedge g(x)$
arity two predicate p_{2}	$(N \backslash N) / N P: \lambda x \cdot \lambda g \cdot \lambda y \cdot p_{2}(x, y) \wedge g(x)$	$(N \backslash N) / N P: \lambda g . \lambda x \cdot \lambda y . b o r d e r s(x, y) \wedge g(x)$
an arg max / min with second argument arity one function f	$N P / N: \lambda g . \arg \max / \min (g, \lambda x . f(x))$	$N P / N: \lambda g \cdot \arg \max (g, \lambda x . \operatorname{size}(x))$
$\begin{gathered} \text { an arity one } \\ \text { numeric-ranged function } f \end{gathered}$	$S / N P: \lambda x . f(x)$	$S / N P: \lambda x . \operatorname{size}(x)$

Log-linear probability models

- Define probability of parse tree in terms of features:

$$
\begin{gathered}
\quad P(t \mid w)=\frac{e^{\theta \cdot f(t, w)}}{\sum_{t^{\prime}} e^{\theta \cdot f\left(t^{\prime}, w\right)}} \\
\text { where } \theta \cdot \mathrm{f}(\mathrm{t}, \mathrm{w})=\theta_{1} \cdot \mathrm{f}_{1}(\mathrm{t}, \mathrm{w})+\ldots+\theta_{\mathrm{n}} \cdot \mathrm{f}_{\mathrm{n}}(\mathrm{t}, \mathrm{w})
\end{gathered}
$$

- Features $\mathrm{f}(\mathrm{t}, \mathrm{w})$ can capture arbitrary properties of t and w.
- Here: Each feature counts uses of one grammar rule.
- Train weight vector θ from data.

Zettlemoyer \& Collins

overall learning algorithm

Algorithm:

- For $t=1 \ldots T$

Step 1: (Lexical generation)

- For $i=1 \ldots n$:
- Set $\lambda=\Lambda_{0} \cup \operatorname{GENLEX}\left(S_{i}, L_{i}\right)$.
- Calculate $\pi=\operatorname{PARSE}\left(S_{i}, L_{i}, \lambda, \bar{\theta}^{t-1}\right)$.
- Define λ_{i} to be the set of lexical entries in π.
- Set $\Lambda_{t}=\Lambda_{0} \cup \bigcup_{i=1}^{n} \lambda_{i}$

Step 2: (Parameter Estimation)

- Set $\bar{\theta}^{t}=\operatorname{ESTIMATE}\left(\Lambda_{t}, E, \bar{\theta}^{t-1}\right)$

Evaluation results

System	Variable Free			Lambda Calculus		
	Rec.	Pre.	F1	Rec.	Pre.	F1
Cross Validation Results						
KRISP	71.7	$\mathbf{9 3 . 3}$	81.1	-	-	-
WASP	74.8	87.2	80.5	-	-	-
Lu08	81.5	89.3	$\mathbf{8 5 . 2}$	-	-	-
λ-WASP	-	-	-	86.6	92.0	89.2
Independent Test						
Set						
ZC05	-	-	-	79.3	$\mathbf{9 6 . 3}$	87.0
ZC07	-	-	-	86.1	91.6	88.8
UBL	81.4	89.4	$\mathbf{8 5 . 2}$	85.0	94.1	$\mathbf{8 9 . 3}$
UBL-s	$\mathbf{8 4 . 3}$	85.2	84.7	$\mathbf{8 7 . 9}$	88.5	88.2

Abstract Meaning Representations

- Pros and cons of Geoquery:
- semantic representations are trees - (too) easy
- very small
- Since 2014, much larger corpora available: $\sim 40 \mathrm{k}$ AMRs, graphs as semantic representations.

"I don't want anyone to read my book carelessly."

Dependency-style AMR parsing

"The boy wants to visit New York City."

Concept Identification: determine atomic graph for each word.
Relation Identification: add all edges with positive weight; then repeatedly add least negative edge that connects subgraphs.

Issues with JAMR

- JAMR can draw edge between any two nodes; syntactic structure of sentence used only indirectly.
- Semantic representations for words don't know anything about their semantic arguments.
- Edges for control verbs added arbitrarily, not because linguistic principle of control discovered.
- No notion of compositionality!

Compositional AMR Parsing

"The writer wants to sleep soundly."
(Groschwitz et al., ACL 2018)

AM algebra

Two operations for combining s-graphs:
Apply (= head + complement), Modify (= head + modifier).

APP and MOD can be expressed in terms of rename, forget, merge.
(Groschwitz et al., IWCS 2017; inspired by Copestake et al. 2001)

AM terms

Approach

- Convert (string, graph) training data into (string, supertags + dependencies) training data.
- Train neural supertagger + dependency parser to assign scores to supertags + dependencies.
- easier than predicting the whole graph; compositional!
- At evaluation time, compute highest-scoring well-typed dependency tree.
- well-typedness requirement makes this NP-complete
- solve approximately with CKY-style parsing algorithm

Converting training data

Neural model

$\omega(2 \rightarrow \mathrm{n})=\log \mathrm{P}($ edge from $2 \rightarrow \mathrm{n} \mid \mathbf{x})$ is score for this edge.
Analogously for supertags and edge labels.
(cf. Lewis et al. 2014; Kiperwasser \& Goldberg 2016)

Parsing across graphbanks

	DM		PAS		PSD		EDS		AMR 2015 Smatch F	AMR 2017 Smatch F
	id F	$\operatorname{ood} \mathrm{F}$	id F	oodF	id F	oodF	Smatch F	EDM		
Groschwitz et al. (2018)	-	-	-	-	-	-	-	-	70.2	71.0
Lyu and Titov (2018)	-	-	-	-	-	-	-	-	73.7	74.4 ± 0.16
Zhang et al. (2019)	-	-	-	-	-	-	-	-	-	76.3 ± 0.1
Peng et al. (2017) Basic	89.4	84.5	92.2	88.3	77.6	75.3	-	-	-	-
Dozat and Manning (2018)	93.7	88.9	94.0	90.8	81.0	79.4	-	-	-	-
Buys and Blunsom (2017)	-	-	-	-	-	-	85.5	85.9	60.1	-
Chen et al. (2018)	-	-	-	-	-	-	90.9 ${ }^{1,2}$	$90.4{ }^{1}$	-	-
This paper (GloVe)	90.4 ± 0.2	84.3 ± 0.2	91.4 ± 0.1	86.6 ± 0.1	78.1 ± 0.2	74.5 ± 0.2	87.6 ± 0.1	82.5 ± 0.1	69.2 ± 0.4	70.7 ± 0.2
This paper (BERT)	$\mathbf{9 3 . 9} \pm 0.1$	$\mathbf{9 0 . 3} \pm 0.1$	$\mathbf{9 4 . 5} \pm 0.1$	$\mathbf{9 2 . 5} \pm 0.1$	$\mathbf{8 2 . 0} \pm 0.1$	$\mathbf{8 1 . 5} \pm 0.3$	90.1 ± 0.1	84.9 ± 0.1	74.3 ± 0.2	75.3 ± 0.2
Peng et al. (2017) Freda1	90.0	84.9	92.3	88.3	78.1	75.8	-	-	-	-
Peng et al. (2017) Freda3	90.4	85.3	92.7	89.0	78.5	76.4	-	-	-	-
This paper, MTL (GloVe)	91.2 ± 0.1	85.7 ± 0.0	92.2 ± 0.2	88.0 ± 0.3	78.9 ± 0.3	76.2 ± 0.4	88.2 ± 0.1	83.3 ± 0.1	$(70.4)^{3} \pm 0.2$	71.2 ± 0.2
This paper, MTL (BERT)	94.1 ± 0.1	90.5 ± 0.1	94.7 ± 0.1	$\mathbf{9 2 . 8} \pm 0.1$	$\mathbf{8 2 . 1} \pm 0.2$	$\mathbf{8 1 . 6} \pm 0.1$	90.4 ± 0.1	85.2 ± 0.1	$(74.5)^{3} \pm 0.1$	75.3 ± 0.1

- First semantic parser that does well across all six major graphbanks.
- Established new states of the art through use of pretrained BERT embeddings.
- Small improvements through multi-task learning on multiple graphbanks.

Conclusion

- Challenge in compositional semantic construction: Where do we get large-scale grammars?
- Semantic parsing: Learn such grammars from corpora with semantic annotations.
- GeoQuery: small corpus of trees
- AMRBank: new hotness
- Very active research topic right now.

