
Non-Parametric 
Bayesian Models

Computational Linguistics

Alexander Koller

21 January 2020

with help from Christoph Teichmann 
and illustrations by Martín Villalba

Topic models

given: raw documentslearn: word probs. 
for (abstract) topics

learn: topic mixture  
in each document

(Blei, Comm. ACM 12)

Examples review articles

APRIL 2012 | VOL. 55 | NO. 4 | COMMUNICATIONS OF THE ACM 79

evolutionary biology, and each word
is drawn from one of those three top-
ics. Notice that the next article in
the collection might be about data
analysis and neuroscience; its distri-
bution over topics would place prob-
ability on those two topics. This is
the distinguishing characteristic of
latent Dirichlet allocation—all the
documents in the collection share
the same set of topics, but each docu-
ment exhibits those topics in differ-
ent proportion.

As we described in the introduc-
tion, the goal of topic modeling is
to automatically discover the topics
from a collection of documents. The
documents themselves are observed,
while the topic structure—the topics,
per-document topic distributions,
and the per-document per-word topic
 assignments—is hidden structure. The
central computational problem for
topic modeling is to use the observed
documents to infer the hidden topic
structure. This can be thought of as
“reversing” the generative process—
what is the hidden structure that likely
generated the observed collection?

Figure 2 illustrates example infer-
ence using the same example docu-
ment from Figure 1. Here, we took
17,000 articles from Science magazine
and used a topic modeling algorithm to
infer the hidden topic structure. (The

algorithm assumed that there were 100
topics.) We then computed the inferred
topic distribution for the example
article (Figure 2, left), the distribution
over topics that best describes its par-
ticular collection of words. Notice that
this topic distribution, though it can
use any of the topics, has only “acti-
vated” a handful of them. Further, we
can examine the most probable terms
from each of the most probable topics
(Figure 2, right). On examination, we
see that these terms are recognizable
as terms about genetics, survival, and
data analysis, the topics that are com-
bined in the example article.

We emphasize that the algorithms
have no information about these sub-
jects and the articles are not labeled
with topics or keywords. The inter-
pretable topic distributions arise by
computing the hidden structure that
likely generated the observed col-
lection of documents.c For example,
Figure 3 illustrates topics discovered
from Yale Law Journal. (Here the num-
ber of topics was set to be 20.) Topics

c Indeed calling these models “topic models”
is retrospective—the topics that emerge from
the inference algorithm are interpretable for
almost any collection that is analyzed. The fact
that these look like topics has to do with the
statistical structure of observed language and
how it interacts with the specific probabilistic
assumptions of LDA.

about subjects like genetics and data
analysis are replaced by topics about
discrimination and contract law.

The utility of topic models stems
from the property that the inferred hid-
den structure resembles the thematic
structure of the collection. This inter-
pretable hidden structure annotates
each document in the collection—a
task that is painstaking to perform
by hand—and these annotations can
be used to aid tasks like information
retrieval, classification, and corpus
exploration.d In this way, topic model-
ing provides an algorithmic solution to
managing, organizing, and annotating
large archives of texts.

LDA and probabilistic models. LDA
and other topic models are part of the
larger field of probabilistic modeling.
In generative probabilistic modeling,
we treat our data as arising from a
generative process that includes hid-
den variables. This generative process
defines a joint probability distribution
over both the observed and hidden
random variables. We perform data
analysis by using that joint distribu-
tion to compute the conditional distri-
bution of the hidden variables given the

d See, for example, the browser of Wikipedia
built with a topic model at http://www.sccs.
swarthmore.edu/users/08/ajb/tmve/wiki100k/
browse/topic-list.html.

Figure 2. Real inference with LDA. We fit a 100-topic LDA model to 17,000 articles from the journal Science. At left are the inferred
topic proportions for the example article in Figure 1. At right are the top 15 most frequent words from the most frequent topics found
in this article.

“Genetics”
human
genome
dna
genetic
genes
sequence
gene

molecular
sequencing
map

information
genetics
mapping
project
sequences

life

two

“Evolution”
evolution
evolutionary
species
organisms

origin
biology
groups

phylogenetic
living
diversity
group
new

common

“Disease”
disease
host
bacteria
diseases
resistance
bacterial
new
strains
control
infectious
malaria
parasite
parasites
united

tuberculosis

“Computers”
computer
models
information
data

computers
system
network
systems
model
parallel
methods
networks
software
new

simulations

1 8 16 26 36 46 56 66 76 86 96
Topics

Pr
ob
ab
ili
ty

0.
0

0.
1

0.
2

0.
3

0.
4

topic mixture for 
one article in Science

15 words with highest ϕk,w 
for each topic over whole corpus  

(with made-up topic label)

(Blei 2012)

Examples

review articles

APRIL 2012 | VOL. 55 | NO. 4 | COMMUNICATIONS OF THE ACM 81

problem, computing the conditional
distribution of the topic structure
given the observed documents. (As we
mentioned, this is called the posterior.)
Using our notation, the posterior is

 (2)

The numerator is the joint distribution
of all the random variables, which can
be easily computed for any setting of
the hidden variables. The denomina-
tor is the marginal probability of the
observations, which is the probability
of seeing the observed corpus under
any topic model. In theory, it can be
computed by summing the joint distri-
bution over every possible instantiation
of the hidden topic structure.

That number of possible topic
structures, however, is exponentially
large; this sum is intractable to com-
pute.f As for many modern probabilis-
tic models of interest—and for much
of modern Bayesian statistics—we
cannot compute the posterior because
of the denominator, which is known
as the evidence. A central research
goal of modern probabilistic model-
ing is to develop efficient methods
for approximating it. Topic modeling
algorithms—like the algorithms used
to create Figures 1 and 3—are often
adaptations of general-purpose meth-
ods for approximating the posterior
distribution.

Topic modeling algorithms form
an approximation of Equation 2 by
adapting an alternative distribution
over the latent topic structure to be
close to the true posterior. Topic mod-
eling algorithms generally fall into
two categories—sampling-based algo-
rithms and variational algorithms.

Sampling-based algorithms
attempt to collect samples from the
posterior to approximate it with an
empirical distribution. The most
commonly used sampling algorithm
for topic modeling is Gibbs sampling,
where we construct a Markov chain—
a sequence of random variables, each
dependent on the previous—whose

f More technically, the sum is over all possible
ways of assigning each observed word of the
collection to one of the topics. Document col-
lections usually contain observed words at
least on the order of millions.

limiting distribution is the posterior.
The Markov chain is defined on the
hidden topic variables for a particular
corpus, and the algorithm is to run the
chain for a long time, collect samples

from the limiting distribution, and
then approximate the distribution
with the collected samples. (Often, just
one sample is collected as an approxi-
mation of the topic structure with

Figure 4. The graphical model for latent Dirichlet allocation. Each node is a random variable
and is labeled according to its role in the generative process (see Figure 1). The hidden
nodes—the topic proportions, assignments, and topics—are unshaded. The observed
nodes—the words of the documents—are shaded. The rectangles are “plate” notation,
which denotes replication. The N plate denotes the collection words within documents;
the D plate denotes the collection of documents within the collection.

hZd,n Wd,n
N
D K

qda bk

Figure 5. Two topics from a dynamic topic model. This model was fit to Science from 1880
to 2002. We have illustrated the top words at each decade.

 1880
energy

molecules
atoms

molecular
matter

 1890
molecules

energy
atoms

molecular
matter

 1900
energy

molecules
atoms
matter
atomic

 1910
energy
theory
atoms
atom

molecules

 1920
atom

atoms
energy

electrons
electron

 1930
energy

electrons
atoms
atom

electron

 1940
energy

rays
electron
atomic
atoms

 1950
energy

particles
nuclear
electron
atomic

 1960
energy

electron
particles
electrons
nuclear

 1970
energy

electron
particles
electrons

state

 1980
energy

electron
particles

ion
electrons

 1990
energy

electron
state

atoms
states

 2000
energy
state

quantum
electron
states

1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

P
ro

pr
ti

on
 o

f S
ci

en
ce

To
pi

c
sc

or
e

 "Mass and Energy" (1907)

 "The Wave Properties
of Electrons" (1930) "The Z Boson" (1990)

 "Quantum Criticality:
Competing Ground States
in Low Dimensions" (2000)

 "Structure of the
Proton" (1974)

 "Alchemy" (1891)

 "Nuclear Fission" (1940)

quantum molecular

atomic

 1880
french
france

england
country
europe

 1890
england
france
states

country
europe

 1900
states
united

germany
country
france

 1910
states
united

country
germany
countries

 1920
war

states
united
france
british

 1930
international

states
united

countries
american

 1940
war

states
united

american
international

 1950
international

united
war

atomic
states

 1960
united
soviet
states

nuclear
international

 1970
nuclear
military
soviet
united
states

 1980
nuclear
soviet

weapons
states
united

 1990
soviet

nuclear
united
states
japan

 2000
european

united
nuclear
states

countries

1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

war

european

nuclear

P
ro

pr
ti

on
 o

f S
ci

en
ce

To
pi

c
sc

or
e

"Speed of Railway Trains
in Europe" (1889)

"Farming and Food Supplies
in Time of War" (1915)

"The Atom and Humanity" (1945)

"Science in the USSR" (1957)

"The Costs of the Soviet
Empire" (1985)

"Post-Cold War Nuclear
Dangers" (1995)

development of topics from Science over time (1880-2002)

(Blei 2012)

Last time
Say you come across some people who have been stabbed or poisoned. 
You know that each of them was killed by a pirate or a ninja. 
You can tell how each person died, but not by whom they were killed.

Generative story

• We assume deaths are generated as follows:  
 
(θpi, θni) ~ Dir(α, α) 
(ϕst|pi, ϕpo|pi), (ϕst|ni, ϕpo|ni) ~ Dir(β, β) 
z1, …, zK ~ Categorical(θ)  
wi ~ Categorical(ϕzi)

• That is:
‣ P(zi = pi) = θpi, P(zi = ni) = θni

‣ if zi came out as “pi”, then P(wi = st) = ϕst|pi

z

β

w

N

θ α

2ϕ

I abbreviate θ = (θpi, θni), ϕpi = (ϕst|pi, ϕpo|pi), ϕni = (ϕst|ni, ϕpo|ni).
α, β are assumed given and are called hyperparameters.

i zi wi

1

2

Supervised learning
If all killers are known, P(M | D) is easy to compute.

(0,1) (0.5, 0.5) (1,0)

α = (1, 1)

(0,1) (0.5, 0.5) (1,0)

α = (2, 2)

(0,1) (0.5, 0.5) (1,0)

α = (2, 1)

P (M) = Dir↵,↵(✓) ·Dir�,�(�pi) ·Dir�,�(�ni)

/ ✓↵�1
pi · ✓↵�1

ni · ���1
st|pi · �

��1
po|pi · �

��1
st|ni · �

��1
po|ni

P (D | M) = P (z1 = pi, w1 = st, z2 = ni, w2 = po)

= ✓pi · �st|pi · ✓ni · �po|ni

P (M | D) / P (D | M) · P (M)

/ ✓↵pi · ✓↵ni · �
�
st|pi · �

��1
po|pi · �

��1
st|ni · �

�
po|ni

/ Dir↵+1,↵+1(✓) ·Dir�+1,�(�pi) ·Dir�,�+1(�ni)

Gibbs Sampling

• Gibbs sampling is MCMC method for computing
expected values under posterior distribution.

z1 z2

z1 z2

z1 z2

z1 z2

z1 z2

z1 z2

z1 z2

P(z1 = pi | w, z2 = ni)

P(z1 = ni | w, z2 = ni)

P (zi = pi | w, z�i)

/ (n(�i)
pi + ↵pi)

n(�i)
pi,wi

+ �wi|pi
P

w0 n
(�i)
pi,w0 + �w0|pi

Let’s simplify

• To bring out today’s point more clearly, consider a
parade of observable pirates and ninjas  
(unlike last time, where they were latent):  
 
θ = (θpi, θni) ~ Dir(αpi, αni) 
z1, …, zN ~ Categorical(θ) 

• Posterior after observations D = z1, …, zN:

z
N

θ α

P (✓ | D) = Dir↵pi+npi,↵ni+nni(✓pi, ✓ni)

Predictive distributions

z1

θ

z2 zN… z1

θ

z2 zN…

posterior 
P(θ | z1, …, zN)

zN-1

predictive probability  
P(zN | z1, …, zN-1)

Predictive distribution

• We can determine the predictive distribution by
marginalizing over the model: 
 
 
 
 
 

• Or equivalently, with α = αpi + αni and πpi = αpi / α:

P (zi = pi | z1, . . . , zi�1) =

Z
P (zi = pi | M, z1, . . . , zi�1) · P (M | z1, . . . , zi�1) dM

=

Z
✓pi · P (M | z1, . . . , zi�1) dM

= . . .

=
↵pi + n�i

pi

↵pi + ↵ni + (i� 1)

pirates in 1, …, i-1

P (zi = pi | z1, . . . , zi�1) =
n�i
pi

↵+ (i� 1)
+

↵ · ⇡pi

↵+ (i� 1)

Teichmann Pocket Process

• Illustrate this distribution as follows:
‣ left pocket contains αpi pirates, αni ninjas

‣ right pocket contains α jokers

‣ randomly draw a card from right pocket

‣ if it is pirate or ninja, output that guy and put him and a
clone of him in right pocket

‣ if it is joker, randomly draw a guy X from left pocket;
output X, put him back in left pocket, and put clone in right

• Officially called “Polya urn scheme”, but I prefer
Christoph Teichmann’s pocket metaphor.

Teichmann Pocket Process

z1 z2 z3

…

z7

P (zi = pi | z1, . . . , zi�1) =
n�i
pi

↵+ (i� 1)
+

↵

↵+ (i� 1)
· ⇡pi

Non-parametric models

• Key limitation of models so far: must specify
number K of topics / of killer types.

• Will now generalize this to a class of Bayesian
models that automatically pick as many killer types
as needed to fit the data.

• Called non-parametric models because number of
parameters not fixed in advance like in (θ1, …, θK).

Non-parametric models

• Idea: prob dist over infinite space of events.
‣ assume some base distribution G over these events

‣ add Polya-urn-style caching model on top of it

• Can simply adapt predictive distribution:

• Earlier pirate-ninja distribution:  
G(pi) = πpi, G(ni) = πni with πpi + πni = 1.

P (zi = k | z1, . . . , zi�1) =
n�i
k

↵+ (i� 1)
+

↵

↵+ (i� 1)
·G(k)

Teichmann Pocket Process

z1 z2 z3 z6

P (zi = k | z1, . . . , zi�1) =
n�i
k

↵+ (i� 1)
+

↵

↵+ (i� 1)
·G(k)

z4 z5

G

Chinese Restaurant Process

• Alternative illustration (very popular in literature):
‣ Chinese restaurant with infinite sequence of tables, 

each of which has infinite seating capacity.

‣ With probability , customer i chooses to sit at

table k (which has nk-i other people sitting at it).

‣ With probability customer opens up new table,

and label L for new table drawn at random from G(L).

n�i
k

↵+ (i� 1)

↵

↵+ (i� 1)

…

table 1 table 2 table 3

Exchangeability

• The CRP is exchangeable: when computing  
P(zi | z-i), can pretend that zi is last event (and tables
have all customers from z-i on them).

• Can therefore use predictive prob in two ways:
‣ as predictive prob, to predict next unseen event

‣ in Gibbs sampling, to resample zi based on the others

• De Finetti’s theorem: Exchangeable observations
are independent given some latent variables.
‣ for CRP, distribution over latent variables 

 is Dirichlet process

Grammar induction

• Tree substitution grammar (TSG) is a grammar
formalism in which elementary trees are combined
using the substitution operation.

• In the Penn Treebank, we can only observe the
derived trees.
‣ Unclear how they were constructed from elementary trees.

• How can we induce a (probabilistic) TSG grammar
from the Penn Treebank trees?

TSG: ExampleCOHN, BLUNSOM AND GOLDWATER

(a)

S

NP

NP

George

VP

V

hates

NP

NP

broccoli

(b)

S

NP VP

V

hates

NP

NP

George

NP

broccoli

(c)

S

NP

George

VP

V

V

hates

NP

broccoli

(d)

S

NP

George

VP

V NP

broccoli

V

hates

Figure 1: Example derivations for the same tree, where arrows indicate substitution sites. The
left figures (a) and (c) show two different derivations and the right figures (b) and (d) show the
elementary trees used in the respective derivation.

respectively, where tree(e) returns the tree for the derivation e and yield(t) returns the string of
terminal symbols at the leaves of t.

Estimating a PTSG requires learning the sufficient statistics for P(e|c) in (1) based on a training
sample. Estimation has been done in previous work in a variety of ways, for example using heuristic
frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 2000) and heldout estimation
(Prescher et al., 2004). Parsing involves finding the most probable tree for a given string, that is,
argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms for parsing have been
reported, most notably a Monte-Carlo approach for finding the maximum probability tree (Bod,
1995) and a technique for maximising labelled recall using inside-outside inference in a PCFG
reduction grammar (Goodman, 1998).

2.1 Dependency Grammars

Due to the wide availability of annotated treebanks, phrase structure grammars have become a pop-
ular formalism for building supervised parsers, and we will follow this tradition by using phrase
structure trees from the Wall Street Journal corpus (Marcus et al., 1993) as the basis for our su-
pervised grammar induction experiments (grammar refinement). However, the choice of formalism
for unsupervised induction is a more nuanced one. The induction of phrase-structure grammars is
notoriously difficult, since these grammars contain two kinds of ambiguity: the constituent structure
and the constituent labels. In particular, constituent labels are highly ambiguous: firstly we don’t
know a priori how many there are, and secondly labels that appear high in a tree (e.g., an S category

3058

COHN, BLUNSOM AND GOLDWATER

(a)

S

NP

NP

George

VP

V

hates

NP

NP

broccoli

(b)

S

NP VP

V

hates

NP

NP

George

NP

broccoli

(c)

S

NP

George

VP

V

V

hates

NP

broccoli

(d)

S

NP

George

VP

V NP

broccoli

V

hates

Figure 1: Example derivations for the same tree, where arrows indicate substitution sites. The
left figures (a) and (c) show two different derivations and the right figures (b) and (d) show the
elementary trees used in the respective derivation.

respectively, where tree(e) returns the tree for the derivation e and yield(t) returns the string of
terminal symbols at the leaves of t.

Estimating a PTSG requires learning the sufficient statistics for P(e|c) in (1) based on a training
sample. Estimation has been done in previous work in a variety of ways, for example using heuristic
frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 2000) and heldout estimation
(Prescher et al., 2004). Parsing involves finding the most probable tree for a given string, that is,
argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms for parsing have been
reported, most notably a Monte-Carlo approach for finding the maximum probability tree (Bod,
1995) and a technique for maximising labelled recall using inside-outside inference in a PCFG
reduction grammar (Goodman, 1998).

2.1 Dependency Grammars

Due to the wide availability of annotated treebanks, phrase structure grammars have become a pop-
ular formalism for building supervised parsers, and we will follow this tradition by using phrase
structure trees from the Wall Street Journal corpus (Marcus et al., 1993) as the basis for our su-
pervised grammar induction experiments (grammar refinement). However, the choice of formalism
for unsupervised induction is a more nuanced one. The induction of phrase-structure grammars is
notoriously difficult, since these grammars contain two kinds of ambiguity: the constituent structure
and the constituent labels. In particular, constituent labels are highly ambiguous: firstly we don’t
know a priori how many there are, and secondly labels that appear high in a tree (e.g., an S category

3058

COHN, BLUNSOM AND GOLDWATER

(a)

S

NP

NP

George

VP

V

hates

NP

NP

broccoli

(b)

S

NP VP

V

hates

NP

NP

George

NP

broccoli

(c)

S

NP

George

VP

V

V

hates

NP

broccoli

(d)

S

NP

George

VP

V NP

broccoli

V

hates

Figure 1: Example derivations for the same tree, where arrows indicate substitution sites. The
left figures (a) and (c) show two different derivations and the right figures (b) and (d) show the
elementary trees used in the respective derivation.

respectively, where tree(e) returns the tree for the derivation e and yield(t) returns the string of
terminal symbols at the leaves of t.

Estimating a PTSG requires learning the sufficient statistics for P(e|c) in (1) based on a training
sample. Estimation has been done in previous work in a variety of ways, for example using heuristic
frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 2000) and heldout estimation
(Prescher et al., 2004). Parsing involves finding the most probable tree for a given string, that is,
argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms for parsing have been
reported, most notably a Monte-Carlo approach for finding the maximum probability tree (Bod,
1995) and a technique for maximising labelled recall using inside-outside inference in a PCFG
reduction grammar (Goodman, 1998).

2.1 Dependency Grammars

Due to the wide availability of annotated treebanks, phrase structure grammars have become a pop-
ular formalism for building supervised parsers, and we will follow this tradition by using phrase
structure trees from the Wall Street Journal corpus (Marcus et al., 1993) as the basis for our su-
pervised grammar induction experiments (grammar refinement). However, the choice of formalism
for unsupervised induction is a more nuanced one. The induction of phrase-structure grammars is
notoriously difficult, since these grammars contain two kinds of ambiguity: the constituent structure
and the constituent labels. In particular, constituent labels are highly ambiguous: firstly we don’t
know a priori how many there are, and secondly labels that appear high in a tree (e.g., an S category

3058

grammar with three 
elementary trees

substitution into 
nonterminal leaves

S

VP

NP

broccoli

V

hates

NP

George

S

VP

NP

Mary

V

loves

NP

John

that

S

VP

V

liebt

NP

Maria

NP

Hans

dass

Q

)F

)F

area(x1, x2)

F

state(x1)

smallest(x2,

answer(x1,

Q

)F

)F

area(x1, x2)

F

state(x1)

smallest(x2,

answer(x1,

1

derivation tree

[0.6] [1.0] [0.4] e-tree probabilities

P(d) = 0.24

P

TSG induction

S

VP

NP

broccoli

V

hates

NP

George

S

VP

NP

Mary

V

loves

NP

John

that

S

VP

V

liebt

NP

Maria

NP

Hans

dass

Q

)F

)F

area(x1, x2)

F

state(x1)

smallest(x2,

answer(x1,

Q

)F

)F

area(x1, x2)

F

state(x1)

smallest(x2,

answer(x1,

1

COHN, BLUNSOM AND GOLDWATER

(a)

S

NP

NP

George

VP

V

hates

NP

NP

broccoli

(b)

S

NP VP

V

hates

NP

NP

George

NP

broccoli

(c)

S

NP

George

VP

V

V

hates

NP

broccoli

(d)

S

NP

George

VP

V NP

broccoli

V

hates

Figure 1: Example derivations for the same tree, where arrows indicate substitution sites. The
left figures (a) and (c) show two different derivations and the right figures (b) and (d) show the
elementary trees used in the respective derivation.

respectively, where tree(e) returns the tree for the derivation e and yield(t) returns the string of
terminal symbols at the leaves of t.

Estimating a PTSG requires learning the sufficient statistics for P(e|c) in (1) based on a training
sample. Estimation has been done in previous work in a variety of ways, for example using heuristic
frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 2000) and heldout estimation
(Prescher et al., 2004). Parsing involves finding the most probable tree for a given string, that is,
argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms for parsing have been
reported, most notably a Monte-Carlo approach for finding the maximum probability tree (Bod,
1995) and a technique for maximising labelled recall using inside-outside inference in a PCFG
reduction grammar (Goodman, 1998).

2.1 Dependency Grammars

Due to the wide availability of annotated treebanks, phrase structure grammars have become a pop-
ular formalism for building supervised parsers, and we will follow this tradition by using phrase
structure trees from the Wall Street Journal corpus (Marcus et al., 1993) as the basis for our su-
pervised grammar induction experiments (grammar refinement). However, the choice of formalism
for unsupervised induction is a more nuanced one. The induction of phrase-structure grammars is
notoriously difficult, since these grammars contain two kinds of ambiguity: the constituent structure
and the constituent labels. In particular, constituent labels are highly ambiguous: firstly we don’t
know a priori how many there are, and secondly labels that appear high in a tree (e.g., an S category

3058

COHN, BLUNSOM AND GOLDWATER

(a)

S

NP

NP

George

VP

V

hates

NP

NP

broccoli

(b)

S

NP VP

V

hates

NP

NP

George

NP

broccoli

(c)

S

NP

George

VP

V

V

hates

NP

broccoli

(d)

S

NP

George

VP

V NP

broccoli

V

hates

Figure 1: Example derivations for the same tree, where arrows indicate substitution sites. The
left figures (a) and (c) show two different derivations and the right figures (b) and (d) show the
elementary trees used in the respective derivation.

respectively, where tree(e) returns the tree for the derivation e and yield(t) returns the string of
terminal symbols at the leaves of t.

Estimating a PTSG requires learning the sufficient statistics for P(e|c) in (1) based on a training
sample. Estimation has been done in previous work in a variety of ways, for example using heuristic
frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 2000) and heldout estimation
(Prescher et al., 2004). Parsing involves finding the most probable tree for a given string, that is,
argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms for parsing have been
reported, most notably a Monte-Carlo approach for finding the maximum probability tree (Bod,
1995) and a technique for maximising labelled recall using inside-outside inference in a PCFG
reduction grammar (Goodman, 1998).

2.1 Dependency Grammars

Due to the wide availability of annotated treebanks, phrase structure grammars have become a pop-
ular formalism for building supervised parsers, and we will follow this tradition by using phrase
structure trees from the Wall Street Journal corpus (Marcus et al., 1993) as the basis for our su-
pervised grammar induction experiments (grammar refinement). However, the choice of formalism
for unsupervised induction is a more nuanced one. The induction of phrase-structure grammars is
notoriously difficult, since these grammars contain two kinds of ambiguity: the constituent structure
and the constituent labels. In particular, constituent labels are highly ambiguous: firstly we don’t
know a priori how many there are, and secondly labels that appear high in a tree (e.g., an S category

3058

COHN, BLUNSOM AND GOLDWATER

(a)

S

NP

NP

George

VP

V

hates

NP

NP

broccoli

(b)

S

NP VP

V

hates

NP

NP

George

NP

broccoli

(c)

S

NP

George

VP

V

V

hates

NP

broccoli

(d)

S

NP

George

VP

V NP

broccoli

V

hates

Figure 1: Example derivations for the same tree, where arrows indicate substitution sites. The
left figures (a) and (c) show two different derivations and the right figures (b) and (d) show the
elementary trees used in the respective derivation.

respectively, where tree(e) returns the tree for the derivation e and yield(t) returns the string of
terminal symbols at the leaves of t.

Estimating a PTSG requires learning the sufficient statistics for P(e|c) in (1) based on a training
sample. Estimation has been done in previous work in a variety of ways, for example using heuristic
frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 2000) and heldout estimation
(Prescher et al., 2004). Parsing involves finding the most probable tree for a given string, that is,
argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms for parsing have been
reported, most notably a Monte-Carlo approach for finding the maximum probability tree (Bod,
1995) and a technique for maximising labelled recall using inside-outside inference in a PCFG
reduction grammar (Goodman, 1998).

2.1 Dependency Grammars

Due to the wide availability of annotated treebanks, phrase structure grammars have become a pop-
ular formalism for building supervised parsers, and we will follow this tradition by using phrase
structure trees from the Wall Street Journal corpus (Marcus et al., 1993) as the basis for our su-
pervised grammar induction experiments (grammar refinement). However, the choice of formalism
for unsupervised induction is a more nuanced one. The induction of phrase-structure grammars is
notoriously difficult, since these grammars contain two kinds of ambiguity: the constituent structure
and the constituent labels. In particular, constituent labels are highly ambiguous: firstly we don’t
know a priori how many there are, and secondly labels that appear high in a tree (e.g., an S category

3058

S

VP

NP

Broccoli

V

NP

George

V

hates

1

S

VP

NP

Broccoli

V

NP

George

V

hates

1

Why not EM?

• Our default method for learning with latent
variables L so far: Expectation Maximization (EM).

• EM tries to find maximum-likelihood estimate:  

• This does not work for grammar induction:  
Max-likelihood estimate makes each derived tree a
single elementary tree.
‣ Need prior on L to avoid this: What does a “reasonable”

grammar look like?

max
p

P (D | p)

= max
p

X

L

P (L) · P (D | L, p)

Generative story

In full model (Cohn et al. 2010), there is a separate restaurant for each root symbol.
Also uses extension of CRP called the Pitman-Yor Process.

COHN, BLUNSOM AND GOLDWATER

(a)

S

NP

NP

George

VP

V

hates

NP

NP

broccoli

(b)

S

NP VP

V

hates

NP

NP

George

NP

broccoli

(c)

S

NP

George

VP

V

V

hates

NP

broccoli

(d)

S

NP

George

VP

V NP

broccoli

V

hates

Figure 1: Example derivations for the same tree, where arrows indicate substitution sites. The
left figures (a) and (c) show two different derivations and the right figures (b) and (d) show the
elementary trees used in the respective derivation.

respectively, where tree(e) returns the tree for the derivation e and yield(t) returns the string of
terminal symbols at the leaves of t.

Estimating a PTSG requires learning the sufficient statistics for P(e|c) in (1) based on a training
sample. Estimation has been done in previous work in a variety of ways, for example using heuristic
frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 2000) and heldout estimation
(Prescher et al., 2004). Parsing involves finding the most probable tree for a given string, that is,
argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms for parsing have been
reported, most notably a Monte-Carlo approach for finding the maximum probability tree (Bod,
1995) and a technique for maximising labelled recall using inside-outside inference in a PCFG
reduction grammar (Goodman, 1998).

2.1 Dependency Grammars

Due to the wide availability of annotated treebanks, phrase structure grammars have become a pop-
ular formalism for building supervised parsers, and we will follow this tradition by using phrase
structure trees from the Wall Street Journal corpus (Marcus et al., 1993) as the basis for our su-
pervised grammar induction experiments (grammar refinement). However, the choice of formalism
for unsupervised induction is a more nuanced one. The induction of phrase-structure grammars is
notoriously difficult, since these grammars contain two kinds of ambiguity: the constituent structure
and the constituent labels. In particular, constituent labels are highly ambiguous: firstly we don’t
know a priori how many there are, and secondly labels that appear high in a tree (e.g., an S category

3058

reuse k: new table:

COHN, BLUNSOM AND GOLDWATER

(a)

S

NP

NP

George

VP

V

hates

NP

NP

broccoli

(b)

S

NP VP

V

hates

NP

NP

George

NP

broccoli

(c)

S

NP

George

VP

V

V

hates

NP

broccoli

(d)

S

NP

George

VP

V NP

broccoli

V

hates

Figure 1: Example derivations for the same tree, where arrows indicate substitution sites. The
left figures (a) and (c) show two different derivations and the right figures (b) and (d) show the
elementary trees used in the respective derivation.

respectively, where tree(e) returns the tree for the derivation e and yield(t) returns the string of
terminal symbols at the leaves of t.

Estimating a PTSG requires learning the sufficient statistics for P(e|c) in (1) based on a training
sample. Estimation has been done in previous work in a variety of ways, for example using heuristic
frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 2000) and heldout estimation
(Prescher et al., 2004). Parsing involves finding the most probable tree for a given string, that is,
argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms for parsing have been
reported, most notably a Monte-Carlo approach for finding the maximum probability tree (Bod,
1995) and a technique for maximising labelled recall using inside-outside inference in a PCFG
reduction grammar (Goodman, 1998).

2.1 Dependency Grammars

Due to the wide availability of annotated treebanks, phrase structure grammars have become a pop-
ular formalism for building supervised parsers, and we will follow this tradition by using phrase
structure trees from the Wall Street Journal corpus (Marcus et al., 1993) as the basis for our su-
pervised grammar induction experiments (grammar refinement). However, the choice of formalism
for unsupervised induction is a more nuanced one. The induction of phrase-structure grammars is
notoriously difficult, since these grammars contain two kinds of ambiguity: the constituent structure
and the constituent labels. In particular, constituent labels are highly ambiguous: firstly we don’t
know a priori how many there are, and secondly labels that appear high in a tree (e.g., an S category

3058

COHN, BLUNSOM AND GOLDWATER

(a)

S

NP

NP

George

VP

V

hates

NP

NP

broccoli

(b)

S

NP VP

V

hates

NP

NP

George

NP

broccoli

(c)

S

NP

George

VP

V

V

hates

NP

broccoli

(d)

S

NP

George

VP

V NP

broccoli

V

hates

Figure 1: Example derivations for the same tree, where arrows indicate substitution sites. The
left figures (a) and (c) show two different derivations and the right figures (b) and (d) show the
elementary trees used in the respective derivation.

respectively, where tree(e) returns the tree for the derivation e and yield(t) returns the string of
terminal symbols at the leaves of t.

Estimating a PTSG requires learning the sufficient statistics for P(e|c) in (1) based on a training
sample. Estimation has been done in previous work in a variety of ways, for example using heuristic
frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 2000) and heldout estimation
(Prescher et al., 2004). Parsing involves finding the most probable tree for a given string, that is,
argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms for parsing have been
reported, most notably a Monte-Carlo approach for finding the maximum probability tree (Bod,
1995) and a technique for maximising labelled recall using inside-outside inference in a PCFG
reduction grammar (Goodman, 1998).

2.1 Dependency Grammars

Due to the wide availability of annotated treebanks, phrase structure grammars have become a pop-
ular formalism for building supervised parsers, and we will follow this tradition by using phrase
structure trees from the Wall Street Journal corpus (Marcus et al., 1993) as the basis for our su-
pervised grammar induction experiments (grammar refinement). However, the choice of formalism
for unsupervised induction is a more nuanced one. The induction of phrase-structure grammars is
notoriously difficult, since these grammars contain two kinds of ambiguity: the constituent structure
and the constituent labels. In particular, constituent labels are highly ambiguous: firstly we don’t
know a priori how many there are, and secondly labels that appear high in a tree (e.g., an S category

3058

COHN, BLUNSOM AND GOLDWATER

(a)

S

NP

NP

George

VP

V

hates

NP

NP

broccoli

(b)

S

NP VP

V

hates

NP

NP

George

NP

broccoli

(c)

S

NP

George

VP

V

V

hates

NP

broccoli

(d)

S

NP

George

VP

V NP

broccoli

V

hates

Figure 1: Example derivations for the same tree, where arrows indicate substitution sites. The
left figures (a) and (c) show two different derivations and the right figures (b) and (d) show the
elementary trees used in the respective derivation.

respectively, where tree(e) returns the tree for the derivation e and yield(t) returns the string of
terminal symbols at the leaves of t.

Estimating a PTSG requires learning the sufficient statistics for P(e|c) in (1) based on a training
sample. Estimation has been done in previous work in a variety of ways, for example using heuristic
frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 2000) and heldout estimation
(Prescher et al., 2004). Parsing involves finding the most probable tree for a given string, that is,
argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms for parsing have been
reported, most notably a Monte-Carlo approach for finding the maximum probability tree (Bod,
1995) and a technique for maximising labelled recall using inside-outside inference in a PCFG
reduction grammar (Goodman, 1998).

2.1 Dependency Grammars

Due to the wide availability of annotated treebanks, phrase structure grammars have become a pop-
ular formalism for building supervised parsers, and we will follow this tradition by using phrase
structure trees from the Wall Street Journal corpus (Marcus et al., 1993) as the basis for our su-
pervised grammar induction experiments (grammar refinement). However, the choice of formalism
for unsupervised induction is a more nuanced one. The induction of phrase-structure grammars is
notoriously difficult, since these grammars contain two kinds of ambiguity: the constituent structure
and the constituent labels. In particular, constituent labels are highly ambiguous: firstly we don’t
know a priori how many there are, and secondly labels that appear high in a tree (e.g., an S category

3058

PE

COHN, BLUNSOM AND GOLDWATER

(a)

S

NP

NP

George

VP

V

hates

NP

NP

broccoli

(b)

S

NP VP

V

hates

NP

NP

George

NP

broccoli

(c)

S

NP

George

VP

V

V

hates

NP

broccoli

(d)

S

NP

George

VP

V NP

broccoli

V

hates

Figure 1: Example derivations for the same tree, where arrows indicate substitution sites. The
left figures (a) and (c) show two different derivations and the right figures (b) and (d) show the
elementary trees used in the respective derivation.

respectively, where tree(e) returns the tree for the derivation e and yield(t) returns the string of
terminal symbols at the leaves of t.

Estimating a PTSG requires learning the sufficient statistics for P(e|c) in (1) based on a training
sample. Estimation has been done in previous work in a variety of ways, for example using heuristic
frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 2000) and heldout estimation
(Prescher et al., 2004). Parsing involves finding the most probable tree for a given string, that is,
argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms for parsing have been
reported, most notably a Monte-Carlo approach for finding the maximum probability tree (Bod,
1995) and a technique for maximising labelled recall using inside-outside inference in a PCFG
reduction grammar (Goodman, 1998).

2.1 Dependency Grammars

Due to the wide availability of annotated treebanks, phrase structure grammars have become a pop-
ular formalism for building supervised parsers, and we will follow this tradition by using phrase
structure trees from the Wall Street Journal corpus (Marcus et al., 1993) as the basis for our su-
pervised grammar induction experiments (grammar refinement). However, the choice of formalism
for unsupervised induction is a more nuanced one. The induction of phrase-structure grammars is
notoriously difficult, since these grammars contain two kinds of ambiguity: the constituent structure
and the constituent labels. In particular, constituent labels are highly ambiguous: firstly we don’t
know a priori how many there are, and secondly labels that appear high in a tree (e.g., an S category

3058

COHN, BLUNSOM AND GOLDWATER

(a)

S

NP

NP

George

VP

V

hates

NP

NP

broccoli

(b)

S

NP VP

V

hates

NP

NP

George

NP

broccoli

(c)

S

NP

George

VP

V

V

hates

NP

broccoli

(d)

S

NP

George

VP

V NP

broccoli

V

hates

Figure 1: Example derivations for the same tree, where arrows indicate substitution sites. The
left figures (a) and (c) show two different derivations and the right figures (b) and (d) show the
elementary trees used in the respective derivation.

respectively, where tree(e) returns the tree for the derivation e and yield(t) returns the string of
terminal symbols at the leaves of t.

Estimating a PTSG requires learning the sufficient statistics for P(e|c) in (1) based on a training
sample. Estimation has been done in previous work in a variety of ways, for example using heuristic
frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 2000) and heldout estimation
(Prescher et al., 2004). Parsing involves finding the most probable tree for a given string, that is,
argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms for parsing have been
reported, most notably a Monte-Carlo approach for finding the maximum probability tree (Bod,
1995) and a technique for maximising labelled recall using inside-outside inference in a PCFG
reduction grammar (Goodman, 1998).

2.1 Dependency Grammars

Due to the wide availability of annotated treebanks, phrase structure grammars have become a pop-
ular formalism for building supervised parsers, and we will follow this tradition by using phrase
structure trees from the Wall Street Journal corpus (Marcus et al., 1993) as the basis for our su-
pervised grammar induction experiments (grammar refinement). However, the choice of formalism
for unsupervised induction is a more nuanced one. The induction of phrase-structure grammars is
notoriously difficult, since these grammars contain two kinds of ambiguity: the constituent structure
and the constituent labels. In particular, constituent labels are highly ambiguous: firstly we don’t
know a priori how many there are, and secondly labels that appear high in a tree (e.g., an S category

3058

COHN, BLUNSOM AND GOLDWATER

(a)

S

NP

NP

George

VP

V

hates

NP

NP

broccoli

(b)

S

NP VP

V

hates

NP

NP

George

NP

broccoli

(c)

S

NP

George

VP

V

V

hates

NP

broccoli

(d)

S

NP

George

VP

V NP

broccoli

V

hates

Figure 1: Example derivations for the same tree, where arrows indicate substitution sites. The
left figures (a) and (c) show two different derivations and the right figures (b) and (d) show the
elementary trees used in the respective derivation.

respectively, where tree(e) returns the tree for the derivation e and yield(t) returns the string of
terminal symbols at the leaves of t.

Estimating a PTSG requires learning the sufficient statistics for P(e|c) in (1) based on a training
sample. Estimation has been done in previous work in a variety of ways, for example using heuristic
frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 2000) and heldout estimation
(Prescher et al., 2004). Parsing involves finding the most probable tree for a given string, that is,
argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms for parsing have been
reported, most notably a Monte-Carlo approach for finding the maximum probability tree (Bod,
1995) and a technique for maximising labelled recall using inside-outside inference in a PCFG
reduction grammar (Goodman, 1998).

2.1 Dependency Grammars

Due to the wide availability of annotated treebanks, phrase structure grammars have become a pop-
ular formalism for building supervised parsers, and we will follow this tradition by using phrase
structure trees from the Wall Street Journal corpus (Marcus et al., 1993) as the basis for our su-
pervised grammar induction experiments (grammar refinement). However, the choice of formalism
for unsupervised induction is a more nuanced one. The induction of phrase-structure grammars is
notoriously difficult, since these grammars contain two kinds of ambiguity: the constituent structure
and the constituent labels. In particular, constituent labels are highly ambiguous: firstly we don’t
know a priori how many there are, and secondly labels that appear high in a tree (e.g., an S category

3058

COHN, BLUNSOM AND GOLDWATER

(a)

S

NP

NP

George

VP

V

hates

NP

NP

broccoli

(b)

S

NP VP

V

hates

NP

NP

George

NP

broccoli

(c)

S

NP

George

VP

V

V

hates

NP

broccoli

(d)

S

NP

George

VP

V NP

broccoli

V

hates

Figure 1: Example derivations for the same tree, where arrows indicate substitution sites. The
left figures (a) and (c) show two different derivations and the right figures (b) and (d) show the
elementary trees used in the respective derivation.

respectively, where tree(e) returns the tree for the derivation e and yield(t) returns the string of
terminal symbols at the leaves of t.

Estimating a PTSG requires learning the sufficient statistics for P(e|c) in (1) based on a training
sample. Estimation has been done in previous work in a variety of ways, for example using heuristic
frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 2000) and heldout estimation
(Prescher et al., 2004). Parsing involves finding the most probable tree for a given string, that is,
argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms for parsing have been
reported, most notably a Monte-Carlo approach for finding the maximum probability tree (Bod,
1995) and a technique for maximising labelled recall using inside-outside inference in a PCFG
reduction grammar (Goodman, 1998).

2.1 Dependency Grammars

Due to the wide availability of annotated treebanks, phrase structure grammars have become a pop-
ular formalism for building supervised parsers, and we will follow this tradition by using phrase
structure trees from the Wall Street Journal corpus (Marcus et al., 1993) as the basis for our su-
pervised grammar induction experiments (grammar refinement). However, the choice of formalism
for unsupervised induction is a more nuanced one. The induction of phrase-structure grammars is
notoriously difficult, since these grammars contain two kinds of ambiguity: the constituent structure
and the constituent labels. In particular, constituent labels are highly ambiguous: firstly we don’t
know a priori how many there are, and secondly labels that appear high in a tree (e.g., an S category

3058

COHN, BLUNSOM AND GOLDWATER

(a)

S

NP

NP

George

VP

V

hates

NP

NP

broccoli

(b)

S

NP VP

V

hates

NP

NP

George

NP

broccoli

(c)

S

NP

George

VP

V

V

hates

NP

broccoli

(d)

S

NP

George

VP

V NP

broccoli

V

hates

Figure 1: Example derivations for the same tree, where arrows indicate substitution sites. The
left figures (a) and (c) show two different derivations and the right figures (b) and (d) show the
elementary trees used in the respective derivation.

respectively, where tree(e) returns the tree for the derivation e and yield(t) returns the string of
terminal symbols at the leaves of t.

Estimating a PTSG requires learning the sufficient statistics for P(e|c) in (1) based on a training
sample. Estimation has been done in previous work in a variety of ways, for example using heuristic
frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 2000) and heldout estimation
(Prescher et al., 2004). Parsing involves finding the most probable tree for a given string, that is,
argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms for parsing have been
reported, most notably a Monte-Carlo approach for finding the maximum probability tree (Bod,
1995) and a technique for maximising labelled recall using inside-outside inference in a PCFG
reduction grammar (Goodman, 1998).

2.1 Dependency Grammars

Due to the wide availability of annotated treebanks, phrase structure grammars have become a pop-
ular formalism for building supervised parsers, and we will follow this tradition by using phrase
structure trees from the Wall Street Journal corpus (Marcus et al., 1993) as the basis for our su-
pervised grammar induction experiments (grammar refinement). However, the choice of formalism
for unsupervised induction is a more nuanced one. The induction of phrase-structure grammars is
notoriously difficult, since these grammars contain two kinds of ambiguity: the constituent structure
and the constituent labels. In particular, constituent labels are highly ambiguous: firstly we don’t
know a priori how many there are, and secondly labels that appear high in a tree (e.g., an S category

3058

+ + =

S

VP

NP

broccoli

V

hates

NP

George

S

VP

NP

Mary

V

loves

NP

John

that

S

VP

V

liebt

NP

Maria

NP

Hans

dass

Q

)F

)F

area(x1, x2)

F

state(x1)

smallest(x2,

answer(x1,

Q

)F

)F

area(x1, x2)

F

state(x1)

smallest(x2,

answer(x1,

1

P (zi = k | z1, . . . , zi�1) =
n�
k

↵+ (i� 1)
P (zi = K� + 1 | z1, . . . , zi�1) =

↵

↵+ (i� 1)

Base distribution for e-trees

• Prob dist over infinite set of e-trees; prob decays
exponentially with size of e-tree (hence sum to 1).  
 
 
 
 

• Also need to specify distribution PC over cf. rules.

INDUCING TREE SUBSTITUTION GRAMMARS

before, the − superscript denotes that the counts are calculated over the previous elementary trees,
e−i, and their seating arrangements, z−i.

Finally, we turn to the definition of the base distribution over elementary trees, PE. Recall that
in an elementary tree, each internal node is labelled with a non-terminal category symbol and each
frontier (leaf) node is labelled with either a non-terminal or a terminal symbol. Given a probabilistic
context-free grammar R, we assume that elementary trees are generated (conditioned on the root
non-terminal c) using the following generative process. First, choose a PCFG production c→ α
for expanding c according to the distribution given by R. Next, for each non-terminal in α decide
whether to stop expanding (creating a non-terminal frontier node, also known as a substitution site)
or to continue expanding. If the choice is to continue expanding, a new PCFG production is chosen
to expand the child, and the process continues recursively. The generative process completes when
the frontier is composed entirely of substitution sites and terminal symbols.

Assuming a fixed distribution PC over the rules in R, this generative process leads to the follow-
ing distribution over elementary trees:

PE(e|c) = ∏
i∈I(e)

(1− sci) ∏
f∈F(e)

sc f ∏
c′→α∈e

PC(α|c′) , (7)

where I(e) are the set of internal nodes in e excluding the root, F(e) are the set of frontier non-
terminal nodes, ci is the non-terminal symbol for node i and sc is the probability of stopping ex-
panding a node labelled c. We treat sc as a parameter which is estimated during training, as de-
scribed in Section 4.3. In the supervised case it is reasonable to assume that PC is fixed; we simply
use the maximum-likelihood PCFG distribution estimated from the training corpus (i.e., PC(α|c′) is
simply the relative frequency of the rule c′ → α). In the unsupervised case, we will infer PC; this
requires extending the model to assume that PC is itself drawn from a PYP prior with a uniform base
distribution. We describe this extension below, along with its associated changes to equation 14.

The net effect of our base distribution is to bias the model towards simple rules with a small
number of internal nodes. The geometric increase in cost associated with the stopping decisions
discourages the model from using larger rules; for these rules to be included they must occur very
frequently in the corpus. Similarly, rules which use high-probability (frequent) CFG productions
are favoured. It is unclear if these biases are ideal: we anticipate that other, more sophisticated
distributions would improve the model’s performance.

In the unsupervised setting we no longer have a training set of annotated trees and therefore do
not have a PCFG readily available to use as the base distribution in Equation 7. For this reason we
extend the previous model to a two level hierarchy of PYPs. As before, the topmost level is defined
over the elementary tree fragments (Gc) with the base distribution (PE) assigning probability to the
infinite space of possible fragments. The model differs from the supervised one by defining PC
in (7) using a PYP prior over CFG rules. Accordingly the model can now infer a two level hierarchy
consisting of a PCFG embedded within a TSG, compared to the supervised parsing model which
only learnt the TSG level with a fixed PCFG. Formally, each CFG production is drawn from7

Hc|a′c,b
′
c ∼ PYP(a′c,b′c,Uniform(·|c))

α|c,Hc ∼ Hc , (8)

7. As we are using a finite base distribution over CFG productions, we could use a Dirichlet instead of the PYP presented
in (8). However we elect to use a PYP because it is more general, having additional expressive power from its
discounting behaviour.

3063

prob that e-tree creation 
stops with category ci of i

base distribution over  
context-free rules for c’

Gibbs Sampling for TSGs

S

VP

NP

broccoli

V

hates

NP

George

S

VP

NP

Mary

V

loves

NP

John

that

S

VP

V

liebt

NP

Maria

NP

Hans

dass

Q

)F

)F

area(x1, x2)

F

state(x1)

smallest(x2,

answer(x1,

Q

)F

)F

area(x1, x2)

F

state(x1)

smallest(x2,

answer(x1,

1

0

1

0

1

Gibbs state: nodes marked as 1 (substitution site) or 0 (inside e-tree)

S

VP

NP

broccoli

V

hates

NP

George

S

VP

NP

Mary

V

loves

NP

John

that

S

VP

V

liebt

NP

Maria

NP

Hans

dass

Q

)F

)F

area(x1, x2)

F

state(x1)

smallest(x2,

answer(x1,

Q

)F

)F

area(x1, x2)

F

state(x1)

smallest(x2,

answer(x1,

1

0

1

1

1

S

VP

NPV

NP

George

V

hates

NP

broccoli

S

VP

NP

broccoli

V

hates

NP

George

S

VP

NP

Mary

V

loves

NP

John

that

S

VP

V

liebt

NP

Maria

NP

Hans

dass

1

S

VP

NPV

NP

George

V

hates

NP

broccoli

S

VP

NP

broccoli

V

hates

NP

George

S

VP

NP

Mary

V

loves

NP

John

that

S

VP

V

liebt

NP

Maria

NP

Hans

dass

1

S

VP

NPV

NP

George

V

hates

NP

broccoli

S

VP

NP

broccoli

V

hates

NP

George

S

VP

NP

Mary

V

loves

NP

John

that

S

VP

V

liebt

NP

Maria

NP

Hans

dass

1

S

VP

NPV

NP

George

V

hates

NP

broccoli

S

VP

NP

broccoli

V

hates

NP

George

S

VP

NP

Mary

V

loves

NP

John

that

S

VP

V

liebt

NP

Maria

NP

Hans

dass

1

S

VP

NPV

NP

George

V

hates

NP

broccoli

S

VP

NP

broccoli

V

hates

NP

George

S

VP

NP

Mary

V

loves

NP

John

that

S

VP

V

liebt

NP

Maria

NP

Hans

dass

1

S

VPNP

George

VP

NPV

S

VP

NPV

NP

George

V

hates

NP

broccoli

S

VP

NP

broccoli

V

hates

NP

George

S

VP

NP

Mary

V

loves

NP

John

that

1

S

VPNP

George

VP

NPV

S

VP

NPV

NP

George

V

hates

NP

broccoli

S

VP

NP

broccoli

V

hates

NP

George

S

VP

NP

Mary

V

loves

NP

John

that

1

P(VP 0 → 1 | all others stay)

this is easy to compute 
because of exchangeability

Grammar induction

• Using Gibbs sampler, we can sample from posterior,
given PTB as observations.

• We want to learn how to parse new strings with
PTSG. Can do this in various ways, e.g.:
‣ estimate expected values of PTSG parameters θ with Gibbs

‣ include sentence to be parsed in Gibbs sampling and return
most frequent tree (MPT, MPD in Cohn et al.)

Results
COHN, BLUNSOM AND GOLDWATER

≤ 40 all

Parser F1 EX F1 EX

MLE PCFG 64.2 7.2 63.1 6.7

TSG PYP Viterbi 83.6 24.6 82.7 22.9
TSG PYP MPD 84.2 27.2 83.3 25.4
TSG PYP MPT 84.7 28.0 83.8 26.2
TSG PYP MER 85.4 27.2 84.7 25.8

DOP (Zuidema, 2007) 83.8 26.9
Berkeley parser (Petrov and Klein, 2007) 90.6 90.0
Berkeley parser (restricted) 87.3 31.0 86.6 29.0
Reranking parser (Charniak and Johnson, 2005) 92.0 91.4

Table 4: Full treebank testing results showing labelled F1 and exact match accuracy for sentences
of up to 40 words, and for all sentences. The results of several treebank parsers are also shown (as
reported in the literature, hence the missing values), representing a baseline (PCFG), systems similar
to our own (DOP, Berkeley) and state-of-the-art (Berkeley, Reranking parser). Berkeley (restricted)
uses simplified data preprocessing as compared to Berkeley; the simplified preprocessing is the
same as used in our system, so provides a more fair comparison.

threshold, which impedes the model’s ability to learn highly lexicalized fragments. The grammar
sizes are not strictly comparable, because we are comparing different types of grammar. For our
TSG models we report the number of CFG productions in the transformed MAP PCFG, in which
non-zero count TSG rules typically rewrite as many CFG rules17 and CFG rules from the base
distribution are replicated up to four times. Nevertheless the trend is clear: our model produces
similar results to a state-of-the-art parser, and does so using a similar sized grammar. With additional
rounds of split-merge training the Berkeley grammar grows exponentially larger (200K rules after
six iterations). Our TSG grammar is also far smaller than the full DOP grammar induced from this
data set, which extracts every possible TSG rule from the training set with no size limit, and has
approximately 700K rules.

6.2 Full Treebank

We now train the model on the full training partition of the Penn treebank, using sections 2–21 (see
Table 2 for corpus statistics). We initialise the sampler using a converged model from the end of
a sampling run on the small data set and run the blocked Metropolis Hastings sampler for 20,000
iterations. The MAP PCFG approximation had 156k productions and training took 1.2 million
seconds in total or 61 seconds per iteration.18 We repeated this three times and present the averaged
results in Table 4.

17. The encoding of TSG rules could be made more compact by skipping the internal rewrite steps, instead directly
rewriting the transformed root node as the rule’s frontier. This would mean that each input TSG rule would produce
only two rules in the transformed CFG. It would also affect the choice of parsing algorithm because the transformed
grammar would no longer be binary.

18. Measured using a single core of an AMD Opteron 2.6GHz machine.

3076

Shindo et al., 2012 (single) 91.6 91.1
Shindo et al., 2012 (multiple) 92.9 92.4

Conclusion

• Predictive probabilities:
‣ integrate posterior distribution over models

‣ yields intuitive stochastic processes (Polya)

• Extend to non-parametric models:
‣ distributions over infinite domains with caching

‣ Chinese Restaurant Process, Pitman-Yor

• Apply to grammar induction, e.g. for TSGs.

