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Today

• Today’s lecture is about a method called  
Latent Dirichlet Allocation (LDA). 

• We care about it for two reasons: 
‣ It’s an unsupervised method for identifying topics 

and words that are representative of them. 

‣ It’s a showcase for a family of statistical models called 
Bayesian models which have many uses in CL.



Let’s start simple

• You and I are playing a coin-tossing game.  
I see you throw 63x H, 37x T. 
Should I believe that the coin is fair? 

• Our model of the coin has one parameter, p = P(H). 

• Maximum-likelihood estimate: p = 0.63, i.e. not fair. 

• But what about 
‣ my uncertainty about p? 

‣ my prior beliefs about the fairness of the coin?



Bayesian Models

• ML estimation and similar methods deliver  
point estimates: a single value for each parameter 
that optimizes some criterion. 
‣ Likelihood: P(observations | parameters) 

• Bayesian models: estimate a probability distribution 
P(parameters | observations) over parameters. 
‣ uncertainty about parameter values is reflected at all times 

in the pd

P(parameters | observations) ∝ P(observations | parameters) * P(parameters)

likelihood priorposterior



The Dirichlet distribution

• Take the parameter p itself as the value of a random 
variable. 
‣ need a probability distribution over real numbers; 

more specifically, over tuples of numbers that sum to one 

• We use the Dirichlet distribution. 
p1, …, pK ~ Dir(α1, …, αK) means: 

this is the beta function 
(needed to normalize to 1)

α = (α1, …, αK)  
are called 

hyperparameters

Dir only defined if 
the pi sum to 1

Dir↵(p1, . . . , pK) =
1

B(↵)
· p↵1�1

1 · . . . · p↵K�1
K
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Dirichlet distributions, K = 2

(0,1) (0.5, 0.5) (1,0)

α = (1, 1)

(0,1) (0.5, 0.5) (1,0)

α = (2, 2)

(0,1) (0.5, 0.5) (1,0)

α = (0.1, 0.1)

α = (2, 1)

(0,1) (0.5, 0.5) (1,0)

Dir↵(p1, . . . , pK) =
1

B(↵)
· p↵1�1

1 · . . . · p↵K�1
K
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Bayesian parameter estimation

• We are interested in pd P(M) over our model M = (p). 
This model is very simple; will make more complex later. 

• Before we make any observations, we have a  
prior distribution: P(M) = Dirα,α(p, 1-p) 

• We can then update this to a posterior distribution  
based on observed data:

P (M | D) =
P (D | M) · P (M)

P (D)
/ P (D | M) · P (M)

likelihood priorposterior



Calculating posteriors

P (i⇥H, k ⇥ T | p) = pi · (1� p)k

P (p | i⇥H, k ⇥ T) / P (i⇥H, k ⇥ T | p) · P (p)

/ pi · (1� p)k · p↵�1 · (1� p)↵�1

= pi+↵�1 · (1� p)k+↵�1

More precisely, we have:

prior:

likelihood:

posterior:

P (p) = Dir↵,↵(p, 1� p) / p↵�1 · (1� p)↵�1

P (p | i⇥H, k ⇥ T) = Dir↵+i,↵+k(p, 1� p)



Informed posteriors

(0,1) (0.5, 0.5) (1,0)

α = (1, 1)

(0,1) (0.5, 0.5) (1,0)

α = (2, 2)
α = (2, 1)

(0,1) (0.5, 0.5) (1,0)

prior: 0x H, 0x T 1x H, 0x T 1x H, 1x T

(0,1) (1,0) (0,1) (1,0)(0,1) (1,0)

α = (7, 5)
6x H, 4x T

α = (64, 38)
63x H, 37x T

α = (635, 377)
634x H, 376x T

(0.6, 0.4) (0.63, 0.37) (0.634, 0.376)



Conjugate distributions

• Crucially, P(M) and P(M | D) have the same shape 
(product of Dirichlets). This is because Dirichlet and 
Categorical are conjugate distributions. 
‣ because K = 2 for the coin, we really only used the Beta  

(not Dirichlet) and Bernoulli (not Categorical) distributions 

• This is makes the math very convenient. 

• The hyperparameters of the Dirichlets are updated by 
adding the observed counts to the hp. of the priors. 
‣ priors thus perform smoothing in a very principled way



The next step
Say you come across some people who have been stabbed or poisoned. 
You know that each of them was killed by a pirate or a ninja. 
You can tell how each person died, but not by whom they were killed.



Our task

• We observe N people with their causes of death. 

• Questions we are interested in: 
‣ Who killed each villager?  

z1, …, zN ∈ {pi, ni} 

‣ How many were killed by pirates, how many by ninjas?  
P(pi) = θpi, P(ni) = θni; thus, θpi + θni = 1 

‣ How likely is it that a pirate chooses to stab someone? 
P(st | pi) = ϕst|pi; thus, P(po | pi) = ϕpo|pi = 1 - ϕst|pi 

‣ How likely is it that a ninja chooses to stab someone?  
P(st | ni) = ϕst|ni; thus, P(po | ni) = ϕpo|ni = 1 - ϕst|ni



Fundamental approach

• Goal: Bayesian model with parameters θ, ϕpi, ϕni. 
‣ maximum likelihood: try to estimate concrete values for  

each parameter 

‣ Bayesian: estimate probability distribution P(θ, ϕpi, ϕni) 

• In practice, the model will have latent variables z, 
which cannot be observed directly (e.g. pirate/ninja). 

• Will marginalize over model parameters and work 
with P(z | observations) directly.



Generative story: Idea

z1 z2 zN

w1 w2 wN

θ

…

ϕpi ϕni

α

β

…



Generative story

• We assume deaths are generated as follows:  
 
(θpi, θni) ~ Dir(α, α) 
(ϕst|pi, ϕpo|pi), (ϕst|ni, ϕpo|ni) ~ Dir(β, β) 
z1, …, zK ~ Categorical(θ)  
wi ~ Categorical(ϕzi) 

• That is: 
‣ P(zi = pi) = θpi, P(zi = ni) = θni 

‣ if zi  came out as “pi”, then P(wi = st) = ϕst|pi

z

β

w

N

θ α

2ϕ

I abbreviate θ = (θpi, θni), ϕpi = (ϕst|pi, ϕpo|pi), ϕni = (ϕst|ni, ϕpo|ni). 
α, β are assumed given and are called hyperparameters.



i zi wi

1

2

Supervised learning
If all killers are known, P(M | D) is easy to compute.

(0,1) (0.5, 0.5) (1,0)

α = (1, 1)

(0,1) (0.5, 0.5) (1,0)

α = (2, 2)

(0,1) (0.5, 0.5) (1,0)

α = (2, 1)

P (M) = Dir↵,↵(✓) ·Dir�,�(�pi) ·Dir�,�(�ni)

/ ✓↵�1
pi · ✓↵�1

ni · ���1
st|pi · �

��1
po|pi · �

��1
st|ni · �

��1
po|ni

P (D | M) = P (z1 = pi, w1 = st, z2 = ni, w2 = po)

= ✓pi · �st|pi · ✓ni · �po|ni

P (M | D) / P (D | M) · P (M)

/ ✓↵pi · ✓↵ni · �
�
st|pi · �

��1
po|pi · �

��1
st|ni · �

�
po|ni

/ Dir↵+1,↵+1(✓) ·Dir�+1,�(�pi) ·Dir�,�+1(�ni)



Unsupervised learning

• In the original scenario, we can only observe 
deaths, not killers. Then P(D | M)  
is less convenient: 

• This sums over a number of terms that is 
exponential in N, and thus infeasible to compute. 

• M = (θ, ϕpi, ϕni)

i zi wi

1 ??

2 ??
P (D | M) = P (w1 = st, w2 = po | M)

=
X

k1,k22{pi,ni}

P (z1 = k1, w1 = st, z2 = k2, w2 = po | M)



Latent variables

• Many interesting quantities can be expressed in 
terms of expected values over the latent variables.  

• Some examples:

P (z | w) =
Z

P (z,M | w) dM =

Z
P (z | M,w) · P (M | w) dM

pirate habits

probability that first villager was killed by a pirate

ninja/pirate mixing proportion
1

N
· EP (z|w)[C(zi = ninja)]

EP (z|w)[C(zi = pirate, wi = stab)] / EP (z|w)[C(zi = pirate)]

EP (z|w)[ kz1 = piratek ]



Estimating expected values

• Expected values can be approximated by sampling. 
To compute EP(X)[f(X)]: 
‣ draw S samples x(1), ..., x(S) from P(X) 

‣ estimate 

• Example: To estimate π, sample points from square and count 
how many fall into the circle.

E[f(X)] ⇡ 1

S
·

SX

i=1

f(x(i))

⇡/4 ⇡ EP (x,y)[ kx2 + y2  1k ]



EVs under latent variables

• We could estimate expected values under P(z | w)  
using sampling. However, P(z | w) is usually of a 
form that makes direct sampling difficult. 

• Instead, we can use Gibbs sampling: 
‣ Start from an initial guess z1, …, zN for the latent variables. 

‣ Repeatedly resample guess for some zi conditioned on all 
other z’s, i.e. from P(zi | w, z-i). This is much easier than 
sampling from P(z | w) itself. 

‣ Can prove that probability of observing a sample for z as a 
whole converges to P(z | w).



Gibbs Sampling

z1 z2

z1 z2

z1 z2

z1 z2

z1 z2

z1 z2

z1 z2

z1 z2

z1 z2

P(z1 = pi | w, z2 = ni)

P(z1 = ni | w, z2 = ni)



Transition probabilities

• It remains to determine the transition probabilities 
P(zi | w, z-i). 

• Formula turns out to be remarkably simple:

# people other than i that  
were killed by pirates 

in current sample

# people other than i  
that were killed by pirates  

using method w’

P (zi = pi | w, z�i) / P (w, z�i, zi = pi)

=

Z Z
P (w, z�i, zi = pi, ✓,�) d✓ d�

= . . .

/ (n(�i)
pi + ↵pi)

n(�i)
pi,wi

+ �wi|pi
P

w0 n
(�i)
pi,w0 + �w0|pi



Topic models

given: raw documentslearn: word probs. 
for (abstract) topics 

learn: topic mixture  
in each document

(Blei, Comm. ACM 12)



Latent Dirichlet Allocation

• Topic modeling is almost the same problem as the 
pirate/ninja problem: 
‣ abstract topics = {pirate, ninja} 

‣ words in document = {stabbed, poisoned} 

• Full LDA makes two changes: 
‣ can have T topics instead of just two,  

and also more than two different words 

‣ there are M > 1 documents, and each document 
can have its own mixture θd of topics

zd,i

β

wd,i

N

θd

α

Tϕk

M



Gibbs sampler for LDA

prob of reassigning  
token #i as topic t

# t occurs with word wi 
except at position i

# t occurs in document  
that contains position i, 

except at position i

# t occurs anywhere in corpus, 
except at position i

# tokens in that document, 
minus one (for position i) 

P (zi = t | z�i, w) /
n(wi)
�i,t + �

n(·)
�i,t +W · �

·
n(di)
�i,t + ↵

n(di)
�i,· + T · ↵

W = vocabulary size   /   T = number of topics

(Griffiths & Steyvers 2004)



Examples review articles
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evolutionary biology, and each word 
is drawn from one of those three top-
ics. Notice that the next article in 
the collection might be about data 
analysis and neuroscience; its distri-
bution over topics would place prob-
ability on those two topics. This is 
the distinguishing characteristic of 
latent Dirichlet  allocation—all the 
documents in the collection share 
the same set of topics, but each docu-
ment exhibits those topics in differ-
ent proportion.

As we described in the introduc-
tion, the goal of topic modeling is 
to automatically discover the topics 
from a collection of documents. The 
documents themselves are observed, 
while the topic structure—the topics, 
per-document topic distributions, 
and the per-document per-word topic 
 assignments—is hidden structure. The 
central computational problem for 
topic modeling is to use the observed 
documents to infer the hidden topic 
structure. This can be thought of as 
“reversing” the generative process—
what is the hidden structure that likely 
generated the observed collection?

Figure 2 illustrates example infer-
ence using the same example docu-
ment from Figure 1. Here, we took 
17,000 articles from Science magazine 
and used a topic modeling algorithm to 
infer the hidden topic structure. (The 

algorithm assumed that there were 100 
topics.) We then computed the inferred 
topic distribution for the example 
article (Figure 2, left), the distribution 
over topics that best describes its par-
ticular collection of words. Notice that 
this topic distribution, though it can 
use any of the topics, has only “acti-
vated” a handful of them. Further, we 
can examine the most probable terms 
from each of the most probable topics 
(Figure 2, right). On examination, we 
see that these terms are recognizable 
as terms about genetics, survival, and 
data analysis, the topics that are com-
bined in the example article.

We emphasize that the algorithms 
have no information about these sub-
jects and the articles are not labeled 
with topics or keywords. The inter-
pretable topic distributions arise by 
computing the hidden structure that 
likely generated the observed col-
lection of documents.c For example, 
Figure 3 illustrates topics discovered 
from Yale Law Journal. (Here the num-
ber of topics was set to be 20.) Topics 

c Indeed calling these models “topic models” 
is retrospective—the topics that emerge from 
the inference algorithm are interpretable for 
almost any collection that is analyzed. The fact 
that these look like topics has to do with the 
statistical structure of observed language and 
how it interacts with the specific probabilistic 
assumptions of LDA.

about subjects like genetics and data 
analysis are replaced by topics about 
discrimination and contract law.

The utility of topic models stems 
from the property that the inferred hid-
den structure resembles the thematic 
structure of the collection. This inter-
pretable hidden structure annotates 
each document in the collection—a 
task that is painstaking to perform 
by hand—and these annotations can 
be used to aid tasks like information 
retrieval, classification, and corpus 
exploration.d In this way, topic model-
ing provides an algorithmic solution to 
managing, organizing, and annotating 
large archives of texts.

LDA and probabilistic models. LDA 
and other topic models are part of the 
larger field of probabilistic modeling. 
In generative probabilistic modeling, 
we treat our data as arising from a 
generative process that includes hid-
den variables. This generative process 
defines a joint probability distribution 
over both the observed and hidden 
random variables. We perform data 
analysis by using that joint distribu-
tion to compute the conditional distri-
bution of the hidden variables given the 

d See, for example, the browser of Wikipedia 
built with a topic model at http://www.sccs.
swarthmore.edu/users/08/ajb/tmve/wiki100k/
browse/topic-list.html.

Figure 2. Real inference with LDA. We fit a 100-topic LDA model to 17,000 articles from the journal Science. At left are the inferred  
topic proportions for the example article in Figure 1. At right are the top 15 most frequent words from the most frequent topics found  
in this article.
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(Blei 2012)
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problem, computing the conditional 
distribution of the topic structure 
given the observed documents. (As we 
mentioned, this is called the posterior.) 
Using our notation, the posterior is

  (2)

The numerator is the joint distribution 
of all the random variables, which can 
be easily computed for any setting of 
the hidden variables. The denomina-
tor is the marginal probability of the 
observations, which is the probability 
of seeing the observed corpus under 
any topic model. In theory, it can be 
computed by summing the joint distri-
bution over every possible instantiation 
of the hidden topic structure.

That number of possible topic 
structures, however, is exponentially 
large; this sum is intractable to com-
pute.f As for many modern probabilis-
tic models of interest—and for much 
of modern Bayesian statistics—we 
cannot compute the posterior because 
of the denominator, which is known 
as the evidence. A central research 
goal of modern probabilistic model-
ing is to develop efficient methods 
for approximating it. Topic modeling 
algorithms—like the algorithms used 
to create Figures 1 and 3—are often 
adaptations of general-purpose meth-
ods for approximating the posterior 
distribution.

Topic modeling algorithms form 
an approximation of Equation 2 by 
adapting an alternative distribution 
over the latent topic structure to be 
close to the true posterior. Topic mod-
eling algorithms generally fall into 
two categories—sampling-based algo-
rithms and variational algorithms.

Sampling-based algorithms 
attempt to collect samples from the 
posterior to approximate it with an 
empirical distribution. The most 
commonly used sampling algorithm 
for topic modeling is Gibbs sampling, 
where we construct a Markov chain—
a sequence of random variables, each 
dependent on the  previous—whose 

f More technically, the sum is over all possible 
ways of assigning each observed word of the 
collection to one of the topics. Document col-
lections usually contain observed words at 
least on the order of millions.

limiting distribution is the posterior. 
The Markov chain is defined on the 
hidden topic variables for a particular 
corpus, and the algorithm is to run the 
chain for a long time, collect samples 

from the limiting distribution, and 
then approximate the distribution 
with the collected samples. (Often, just 
one sample is collected as an approxi-
mation of the topic structure with 

Figure 4. The graphical model for latent Dirichlet allocation. Each node is a random variable 
and is labeled according to its role in the generative process (see Figure 1). The hidden 
nodes—the topic proportions, assignments, and topics—are unshaded. The observed 
nodes—the words of the documents—are shaded. The rectangles are “plate” notation,  
which denotes replication. The N plate denotes the collection words within documents;  
the D plate denotes the collection of documents within the collection.

hZd,n Wd,n
N
D K

qda bk

Figure 5. Two topics from a dynamic topic model. This model was fit to Science from 1880  
to 2002. We have illustrated the top words at each decade.
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development of topics from Science over time (1880-2002)

(Blei 2012)



Conclusion

• LDA and extensions for topic modeling. 
‣ Topics interesting in their own right,  

also useful in various applications. 

‣ Simplest useful Bayesian model in NLP. 

• We used (collapsed) Gibbs sampling to 
approximate expected values. 
‣ Alternative is Variational Bayes: approximate P(M|D) on 

paper, then solve integral exactly. 

• Limitation: Number T of topics must be given. 
We will fix this next time.


