Machine Translation 1: Word alignments

Computational Linguistics

Alexander Koller

20 December 2019
slides contain material from mt-class.org

Google Translate

ELPAIS

Spanisch	Deutsch	Englisch	Sprache erkennen	\checkmark		Deutsch	Englisch	Französisch	\checkmark	

Joachim Löw, seleccionador de Alemania, ha anunciado este jueves la lista de los 30 jugadores preseleccionados para acudir al Mundial de Brasil, en la que destacan la ausencia del futuro portero del Barcelona Ter Stegen, y la incorporación de Sami Khedira, del Real Madrid. El medio, que siempre ha contado con la confianza del seleccionador, ya se ha recuperado de la rotura del ligamento cruzado y el interior de la rodilla derecha que se produjo durante un amistoso ante Italia en el mes de noviembre y que le ha mantenido apartado del terreno de juego durante siete meses.
de Sami Khedira, del Real Madrid. El medio, que siempre ha contado
i) \mathcal{F} Ie con la confianza del seleccionador, ya se ha recuperado de la rotura de

Enviar ligamento cruzado y el interior de la rodilla derecha que se produjo Imprimir mantenido apartado del terreno de juego durante siete meses.

Automatic Translation

Google Pixel Buds, 2017

Classical view on translation

Early History

One naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography.

When I look at an article in Russian, I say: "This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode."

Warren Weaver to Norbert Wiener (1947)

Types of MT systems

- What's it for?
- fully automatic translation
- support for human translators
- How does it work?
- rule-based
- statistical
- neural
- Neural methods: see "Machine Translation" course. Here: elementary statistical methods

Corpora

- Learning translation models requires parallel corpora: text in one language with its translation in another.
- (Except for some really recent work on unsupervised neural MT.)
- Popular parallel corpora:
- Hansards (Canadian parliament): English/French
- Europarl (European parliament): EU member languages
- Literary texts with their translations (e.g. bible)

Really Early History

MIGPNEL:MMENA M I MEMKNO NEPEPMHE

no Noysparins ofteer
Rosetta Stone, discovered 1799; deciphered 1822 (Champollion)

Step 1: Lexical Alignment

Lexical Translation

- We want to learn a model P(e $\mid \mathrm{f})$:
- $\mathrm{e}=$ "English" word (target language)
- $\mathrm{f}=$ "French" word (original, foreign language)
- Gives a naive translation model for $\mathrm{P}(\mathbf{e} \mid \mathbf{f})$. (Boldface e, fare English, Foreign sentences.)
- Linked to idea of word alignments.
- alignments often independently useful (e.g. parse tree projection)

Word alignments

Garcia and associates . Garcia y asociados .
Carlos Garcia has three associates .

Carlos Garcia tiene tres asociados
his associates are not strong .
sus asociados no son fuentes .
Garcia has a company also .

Garcia tambien tiene una empress . its clients are angry .
sus clients estan enfadados .
the associates are also angry .
los asociados tambien estan enfadados.
the clients and the associates are enemies .

los clientes y los asociados son enemigos . the company has three groups .

la empress tiene tres grupos .
its groups are in Europe .

sus grupos estan en Europa .
the modern groups sell strong pharmaceuticals.

los grupos modernos venden medicines fuertes. the groups do not sell zanzanine .

los grupos no venden zanzanina .
the small groups are not modern .
los grupos pequenos no son modernos.

Alignment

- Alignments can be visualized by drawing links between two sentences, and they are represented as vectors of positions:

$$
\mathbf{a}=(1,2,3,4)
$$

Reordering

- Words may be reordered during translation.

English word \#1
aligned with Foreign word \#3

$$
\mathbf{a}=(3,4,2,1)
$$

Word Dropping

- A source word may not be translated at all (" 1 " does not occur as a_{i} for any English position i)

$$
\mathbf{a}=(2,3,4)
$$

Word Insertion

- Words may be inserted during translation
- English "just" does not have an equivalent
- record this by aligning with special NULL token at "position 0"
f
e

$$
\mathbf{a}=(1,2,3,0,4)
$$

One-to-many Translation

- A Foreign word may translate into more than one English word.

Many-to-one Translation

- More than one Foreign word may not translate into a single English word (can't represent this).
(

$$
\mathbf{a}=? ? ? ?
$$

Statistical model

- Generative story: Given Foreign string \mathbf{f} and length m of English string, alignments a and English string e are generated randomly.

- Model $\mathrm{P}(\mathbf{a}, \mathbf{e} \mid \mathbf{f}, \mathrm{m})=\mathrm{P}(\mathbf{a} \mid \mathbf{f}, \mathrm{m}){ }^{\star} \mathrm{P}(\mathbf{e} \mid \mathbf{a}, \mathbf{f}, \mathrm{m})$.
- obtain $P(\mathbf{e} \mid \mathbf{f}, \mathrm{m})$ by marginalizing a out \rightarrow translation
- obtain $\mathrm{P}(\mathbf{a} \mid \mathbf{f}, \mathrm{m})$ by marginalizing \mathbf{e} out \rightarrow compute alignments

IBM Model 1

- Simplifying assumptions:

- The alignment decisions for the m English words are independent.
- The alignment distribution for each a_{i} is uniform over all source words and NULL.
- The English words are generated independently, conditioned only on their aligned Foreign words.

$$
\begin{aligned}
& \text { for each } i \in[1,2, \ldots, m] \\
& \qquad \begin{aligned}
a_{i} & \sim \operatorname{Uniform}(0,1,2, \ldots, n) \\
e_{i} & \sim \operatorname{Categorical}\left(\boldsymbol{\theta}_{f_{a_{i}}}\right)
\end{aligned}
\end{aligned}
$$

IBM Model 1

$$
\begin{aligned}
& \text { for each } i \in[1,2, \ldots, m] \\
& \\
& \text { a } a_{i} \sim \operatorname{Uniform}(0,1,2, \ldots, n) \\
& e_{i} \sim \operatorname{Categorical}\left(\boldsymbol{\theta}_{f_{a_{i}}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P\left(e_{i}, a_{i} \mid \mathbf{f}, m\right)=\underbrace{P\left(a_{i} \mid \mathbf{f}, m\right)} \cdot \underbrace{P\left(e_{i} \mid a_{i}, \mathbf{f}, m\right)}=\frac{1}{n+1} \cdot P\left(e_{i} \mid f_{a_{i}}\right) \\
& \quad P(\mathbf{e}, \mathbf{a} \mid \mathbf{f}, m)=\prod_{i=1}^{m} P\left(e_{i}, a_{i} \mid \mathbf{f}, m\right)=\prod_{i=1}^{m} \frac{1}{n+1} \cdot P\left(e_{i} \mid f_{a_{i}}\right) \\
& P(\mathbf{e} \mid \mathbf{f}, m)=\sum_{\mathbf{a}} P(\mathbf{e}, \mathbf{a} \mid \mathbf{f}, m)
\end{aligned}
$$

Example

das	
e $t(e \mid f)$ the 0.7 that 0.15 which 0.075 who 0.05 this 0.025	

Haus

e	$t(e \mid f)$
house	0.8
building	0.16
home	0.02
household	0.015
shell	0.005

ist	
e	$t(e \mid f)$
is	0.8
's	0.16
exists	0.02
has	0.015
are	0.005

klein	
e	$t(e \mid f)$
small	0.4
little	0.4
short	0.1
minor	0.06
petty	0.04

$$
\begin{aligned}
& \mathrm{P}(\mathbf{e}, \mathbf{a} \mid \mathbf{f}, \mathrm{m})= \\
& 1 / 5^{*} \mathrm{P}(\text { Haus } \mid \text { house })^{*} \\
& 1 / 5^{*} \mathrm{P}(\text { ist } \mid \text { is })^{*} \\
& 1 / 5^{*} \mathrm{P}(\text { small } \mid \text { klein }) \\
& =1 / 125^{*} 0.8^{*} 0.8^{*} 0.4 \\
& =0.002
\end{aligned}
$$

$\mathbf{a}=(2,3,4)$

Computing best alignments

- Assume that we know parameters $\mathrm{P}(\mathrm{e} \mid \mathrm{f})$ and we are given \mathbf{e} and \mathbf{f}. What is alignment a that maximizes $P(\mathbf{a} \mid \mathbf{e}, \mathbf{f})$?
- Because of independence of a_{1}, \ldots, a_{m}, can choose best aligned word in \mathbf{f} for each word in e separately.

$$
\begin{aligned}
a_{i}^{*} & =\arg \max _{a_{i}=0}^{n} \frac{1}{1+n} p\left(e_{i} \mid f_{a_{i}}\right) \\
& =\arg \max _{a_{i}=0}^{n} p\left(e_{i} \mid f_{a_{i}}\right)
\end{aligned}
$$

$$
\begin{gathered}
\text { Training } \\
p(\mathbf{e}, \mathbf{a} \mid \mathbf{f}, m)=\prod_{i=1}^{m} \frac{1}{1+n} p\left(e_{i} \mid f_{a_{i}}\right)
\end{gathered}
$$

- Parameters of our model: translation probs $\mathrm{P}(\mathrm{e} \mid \mathrm{f})$ for any two words e and f.
- If we could observe alignments, then we could just do MLE: C(e aligned with f) / C(f)
- Because we usually only have raw parallel text (no alignments), we need to use EM.
- estimate counts from estimate of P
- re-estimate P from estimated counts

EM: An Example

$\mathrm{P}(\mathrm{e} \mid \mathrm{f})$	house	blue
maison	0.5	0.5
bleue	0.5	0.5

$$
p(\mathbf{e}, \mathbf{a} \mid \mathbf{f}, m)=\prod_{i=1}^{m} \frac{1}{1+n} p\left(e_{i} \mid f_{a_{i}}\right)
$$

1. Compute $P(\boldsymbol{e}, \boldsymbol{a} \mid \boldsymbol{f})$ for each alignment of each sentence pair.

$$
\mathrm{P}\left(\mathbf{e}_{1}, \mathbf{a}_{11} \mid \mathbf{f}_{1}\right)=1 / 9^{\star} 1 / 2 \star 1 / 2=1 / 36
$$

$$
\mathrm{P}\left(\mathbf{e}_{1}, \mathbf{a}_{12} \mid \mathbf{f}_{1}\right)=1 / 9 * 1 / 2 * 1 / 2=1 / 36
$$

$$
\mathrm{P}\left(\mathbf{e}_{2}, \mathbf{a}_{2} \mid \mathbf{f}_{2}\right)=1 / 2^{*} 1 / 2=1 / 4
$$

(note: these are not really all alignments)

EM: An Example

$\mathrm{P}(\mathrm{e} \mid \mathrm{f})$	house	blue
maison	0.5	0.5
bleue	0.5	0.5

2. Normalize $P(\boldsymbol{e}, \boldsymbol{a} \mid \boldsymbol{f})$ to yield $P(\boldsymbol{a} \mid \boldsymbol{e}, \boldsymbol{f})$.

$$
P(\mathbf{a} \mid \mathbf{e}, \mathbf{f})=\frac{P(\mathbf{a}, \mathbf{e} \mid \mathbf{f})}{P(\mathbf{e} \mid \mathbf{f})}=\frac{P(\mathbf{a}, \mathbf{e} \mid \mathbf{f})}{\sum_{\mathbf{a}^{\prime}} P\left(\mathbf{a}^{\prime}, \mathbf{e} \mid \mathbf{f}\right)}
$$

$$
\mathrm{P}\left(\mathbf{a}_{11} \mid \mathbf{e}_{1}, \mathbf{f}_{1}\right)=1 / 2
$$

EM: An Example

4. Normalize expected counts $C(\boldsymbol{e}, \boldsymbol{f})$
by total expected counts $C(f)$
to obtain revised translation probs $P(\boldsymbol{e} \mid \boldsymbol{f})$.
expected counts

tc	house	blue
maison	$3 / 2$	$1 / 2$
bleue	$1 / 2$	$1 / 2$

\longrightarrow| $\mathrm{P}(\mathrm{e} \mid \mathrm{f})$ | house | blue |
| :---: | :---: | :---: |
| maison | $3 / 4$ | $1 / 4$ |
| bleue | $1 / 2$ | $1 / 2$ |

EM: Round Two

$\mathrm{P}(\mathrm{e} \mid \mathrm{f})$	house	blue
maison	$3 / 4$	$1 / 4$
bleue	$1 / 2$	$1 / 2$

$$
p(\mathbf{e}, \mathbf{a} \mid \mathbf{f}, m)=\prod_{i=1}^{m} \frac{1}{1+n} p\left(e_{i} \mid f_{a_{i}}\right)
$$

maison bleue house

$$
\begin{aligned}
& P\left(e_{1}, a_{11} \mid f_{1}\right)=1 / 9 * 1 / 4 * 1 / 2=1 / 72 \\
& P\left(e_{1}, a_{12} \mid f_{1}\right)=1 / 9 * 3 / 4 * 1 / 2=3 / 72 \\
& P\left(e_{2}, a_{2} \mid f_{2}\right)=1 / 2 * 3 / 4=3 / 8
\end{aligned}
$$

EM: Round Two

$\mathrm{P}(\mathrm{e} \mid \mathrm{f})$	house	blue
maison	$3 / 4$	$1 / 4$
bleue	$1 / 2$	$1 / 2$

EM: Round Two

expected counts

tc	house	blue
maison	$7 / 4$	$1 / 4$
bleue	$1 / 4$	$3 / 4$

\longrightarrow| $\mathrm{P}(\mathrm{e} \mid \mathrm{f})$ | house | blue |
| :---: | :---: | :---: |
| maison | $7 / 8$ | $1 / 8$ |
| bleue | $1 / 4$ | $3 / 4$ |

After many iterations:

$\mathrm{P}(\mathrm{e} \mid \mathrm{f})$	house	blue
maison	≈ 1	≈ 0
bleue	≈ 0	≈ 1

Efficient computation

- Computation of $\mathrm{P}(\mathbf{a} \mid \mathbf{e}, \mathbf{f})$ in E-step is tricky:

$$
P\left(a_{i}=j \mid \mathbf{e}, \mathbf{f}\right)=\frac{P\left(a_{i}=j, \mathbf{e} \mid \mathbf{f}\right)}{P(\mathbf{e} \mid \mathbf{f})}=\frac{\sum_{\mathbf{a}: a_{i}=j} \prod_{i^{\prime}=1}^{m} P\left(e_{i^{\prime}} \mid f_{a_{i^{\prime}}}\right)}{\sum_{\mathbf{a}} \prod_{i^{\prime}=1}^{m} P\left(e_{i^{\prime}} \mid f_{a_{i^{\prime}}}\right)}
$$

- Summation over a is exponential in sentence length.
- By clever use of law of distributivity, can rewrite this term so it can be computed in quadratic time. See Lopez tutorial on website. (Note flipped eand f.)

Extensions

- IBM Model 2: $\mathrm{P}(\mathbf{a})$ not uniform, but implements reordering model that prefers alignments in which words stay close to their original position.
- Model 3: adds fertility model that predicts the number of English words to which a given f will be aligned. Can't do EM, approximate with sampling.
- Models 4-5: more complicated reordering models.
- Implemented in GIZA++ and successor tools.

Conclusion

- Machine translation: one of the most useful and most challenging disciplines of NLP.
- Today: word alignments.
- IBM Model 1
- computing best alignments
- EM training
- advanced models
- Next time: let's actually translate something.

