Advanced PCFG Parsing

Computational Linguistics

Alexander Koller

10 December 2019

Today

e Semiring parsing.

e Pruning techniques for chart parsing.

Semiring parsing

e We have seen a number of algorithms on CKY
charts that all look basically the same.

» decide word problem
» compute best parse
» compute inside probabilities

» compute number of parse trees

e What exactly do they have in common?
Can we use it to build better algorithms?

CKY for recognition

for each 1 from 1 to n:
for each production rule A » wi:
ChCA, 1, 1+1) = true

for each width b from 2 to n:
for each start position 1 from 1 to n-b+1:
for each left width k from 1 to b-1:
for each production rule A » B C:
ChCA, 1, 1+b)
= ChCA, 1, 1+b) v
(Ch(B, 1, 1+k) A Ch(C, 1+k, 1+b) A true)

return Ch(S, 1, n+l)

Viterbi-CKY

for each 1 from 1 to n:
for each production rule A » wi:
ChCA, 1, 1+1) = PCA » wi)

for each width b from 2 to n:
for each start position 1 from 1 to n-b+1:
for each left width k from 1 to b-1:
for each production rule A » B C:
ChCA, 1, 1+b)
= max(ChCA, 1, 1+b),
Ch(B, 1, 1+k) * Ch(C, 1+k, 1+b) * PCA - B O))

return Ch(S, 1, n+l)

Inside

for each 1 from 1 to n:
for each production rule A » wi:
ChCA, 1, 1+1) = PCA » wi)

for each width b from 2 to n:
for each start position 1 from 1 to n-b+1:
for each left width k from 1 to b-1:
for each production rule A » B C:
ChCA, 1, 1+b)
= Ch(CA, 1, 1+b) +
(Ch(B, 1, 1+k) * Ch((C, 1+k, 1+b) * PCA - B O))

return Ch(S, 1, n+l)

Counting

for each 1 from 1 to n:
for each production rule A » wi:
ChCA, 1, 1+41) =1

for each width b from 2 to n:
for each start position 1 from 1 to n-b+1:
for each left width k from 1 to b-1:
for each production rule A » B C:
ChCA, 1, 1+b)
= Ch(CA, 1, 1+b) +
(Ch(B, 1, 1+k) * Ch((C, 1+k, 1+b) * 1)

return Ch(S, 1, n+l)

Semirings

o A semiring is a 5-tuple consisting of

4

4

4

a nonempty set V of values
an addition ® : V x V >V, associative and commutative

a multiplication ® : V X V >V, must be associative
and distribute over ®

an abstract zero0 € Vsuchthat 0 @ v=v®0=v
and0®v=v®(0=0,forallv

an abstractonel e Vsuchthatl ® v=v® 1 =v, forall v

A semiring where ® has inverse elements is called a ring
— really important in math, but not so much in this course.

Some important semirings

values addition | multiplication Zero one
counting No + X 0 1
boolean {true, false} Y% A false true
Viterbi [0, 1] max * 0 1
inside [0, oo] + * 0 1

Semiring parsing

e We are interested in calculating value V(w) for the
string out of values R(r) for the individual rules:

Viw)= @ V()

teT (w)

- D & RO

teT(w)rule r 1in t

e For any semiring, we can do this CKY-style:

V(A,i,i+1) = R(A — w;)

V(Aji k)= & V(B,i,j)®V(C,jk)® R(A— BC)

A—=B C
1<g<k

Generic CKY with semirings

assume evaluation function R: rules > V

for each 1 from 1 to n:
for each production rule A » wi:
ChCA, 1, 1+1) = RCA » wi)

for each width b from 2 to n:
for each start position 1 from 1 to n-b+1:
for each left width k from 1 to b-1:
for each production rule A » B C:
ChCA, 1, 1+b)
= Ch(A, 1, 1+b) @&
(Ch(B, 1, 1+k) ® Ch(C, 1+k, 1+b) ® RCA » B O))

return Ch(S, 1, n+l)

This generalizes all the variants we saw above.

Parsing Schemata ﬁ
ol

S%lieber

e Parsing algorithm derives claims about the string.
Record such claims in parse items.

o At each step, apply a parsing rule to infer new parse
items from earlier ones.

o If there is a way to derive a goal item from the start
item(s) for a given input string, then claim that this
string is in the language.

Examples for schemas

CKY

shift-reduce

1items
claims

rules

start items

goal items

(A, 1, k)
A =% Wi ... Wk-1

(A, 1, k)

(A,i,i+1)if A>w

(S,1,n+1)

(s,W)

SW =*%w

(s,a -

W)

(s - a,

(s-ssw) A->sinP

(shift)

W)

(e, W)

(S, €)

(s - A, W)

(reduce)

Implementing schemas

e Can generally implement parser for given schema in
the following way:

» maintain an agenda: queue of items that we have discovered,
but not yet attempted to combine with other items

» maintain a chart of all seen items for the sentence

|
initialize chart and agenda with all start items rules Ofparsingj
e

schema used her

T

while agenda not empty:
1tem = dequeue(agenda)
for each combination c of item with other item in the chart:
1f ¢ not in chart:

add ¢ to chart - tial to d

enqueue C in agenda essential to do
this efhiciently

T

1f chart contains a goal item, claim w € L(G)

agenda:

Example

(PR, 5,8) (V,2,3) (Det,3,4) (N,4,5) (N,4,8) (NP,3,5)

(NP, 3,8) (VB 2,5) (VP 2,8)

chart:

2. 3... 4... 5
= VP NP N PP
a VP NP N
=, Det
. Vv

VP>V NP
NP > Det N
N > N PP

A->BC (B ij) (G} k)

(A, 1, k)

Pruning techniques

If grammar is big and sentence is not short,
computing the full chart is expensive.

» runtime of CKY is O(|G| * n3)

» for treebank grammars, almost every substring can be
derived from some nonterminal

Most chart entries not used to build best parse tree.

Pruning: avoid computing the full chart

» beam search: limit number of entries per chart cell

» best-first search: manipulate order in which items are taken
from the agenda

Inside and outside probs

inside: 0.4
outside: 0.15

inside: 0.06
outside: 1

7

—

— ‘0.4

John

P
NP VP

inside: 0.5

‘ 0.5
outside: 0.12

sleeps

» For each individual parse tree, the product of inside and outside
probabilities is same at every node.

» If we could calculate (inside * outside) for each chart item, then we
could focus search on just the items that are needed for best parse.

Figures of Merit

e Challenge in bottom-up parsing:

» We can easily compute (Viterbi) inside of each item.
(Viterbi inside = max P(t); inside = X P(t).)

» We cannot easily compute (Viterbi) outside, because we
haven't combined item with other words yet.

o Idea: estimate (inside * outside) with a figure of
merit (FOM) of the parse item.

» FOM = Viterbi inside prob:
underestimates quality of long substrings

» FOM = (Viterbi inside)!/ [substring| .
works okay in practice, but still ignores outside probs

Beam search

e In CKY parsing, easiest way of using FOMs is
beam search:

» fix a number k of nonterminals that can be stored in each
chart cell

» only retain the k nonterminals with the best FOM

» variant: only retain the nonterminals whose FOM is at least
0 * f, where fis FOM of best nonterminal in same cell

e Beam search very standard technique in parsing
and machine translation (including decoding of
neural network outputs).

Best-first parsing

o Idea: Agenda contains parse items (A, i, k);
order them in descending order of their FOMs.

o If FOM were perfect, then first discovered goal item
represents the best parse, and many unexplored items

still on agenda = faster parser.

e If FOM is not perfect, parser can make search errors:
first discovered goal item is not optimal.

» can still be much faster than exhaustive parsing

» accuracy depends on quality of FOM

A* parsing

e A*search: general method for heuristic search in Al

» FOM h = (distance f from start) + (estimated distance g to goal)

» g must underestimate distance, i.e. never be larger than true
distance

» guarantees that first path to goal we find is optimal

e Apply this to parsing (Klein & Manning 03):
» f=-loginside

» g = estimate of - log outside

Outside estimates

Estimate SX SXL SXLR TRUE
Summary (1,6,NP) (1,6, NP,VBZ) (1,6, NP,VBZ,’,’) (entire context)
S S
\ | S
> P VP S NP VP
Best Tree /1;\IP\ vbz P /PP\ Vb /NP\ \)P PI‘{P VE{\
DT J‘J N‘N VBD IN ’/ljrg NP , CC /N,P\ . VEET\IP
R D\T NI\\IP Nl\\IP D\T J\J N\N V]‘BZ N‘P , PRP VBZ DT NN .
VBZ NP ? ? ? ? VBZ NP , ? 2.2 7 7
Score -11.3 -13.9 -15.1 -18.1
(a) (b) (c) (d)

» Represent each parse item with a summary, which abstracts over the
concrete sentence we are parsing.

» Compute outside estimates for each possible summary from grammar,
before we start parsing actual sentences.

A* parsing: Results

Estimate | Savings | w/ Filter | Storage | Precomp
NULL 11.2 58.3 OK none
S 40.5 77.8 2.5K 1 min
SX 80.3 95.3 SM 1 min
SXL 83.5 96.1 250M 30 min
S1XLR 93.5 96.5 S00M 480 min
SXR 93.8 96.9 250M 30 min
SXMLR 94 .3 97.1 S00M 60 min
B 94.6 97.3 1G 540 min

Coarse-to-fine parsing

o Idea: make coarser-grained grammar by combining
“similar” nonterminals into one (Charniak et al. 06).

» combine S, VP, S-bar, etc. into “S_”

» combine S_ and N_ into “HP” (head phrase); etc.

e Compute complete parse chart with coarse-grained
grammar; calculate exact inside and outside.

e Prune out entries with low inside * outside.
Refine the others, then repeat until we have chart of
original grammar.

CTF parsing: Results

Level ~ Constits ~ Constits % Pruned Level Time for Level Running Total
Produced Pruned 0 1598 1598
%109 %109 1 2570 4168
0 8.82 7.55 86.5 2 4303 8471
1 9.18 6.51 70.8 3 1527 9998
2 11.2 9.48 84.4 3-only 114654 -
3 11,8 0 0.0 - - _ .
total 40.4 B B Figure 6: Running times in seconds on WSJ sec-

tion 23, with and without pruning

3only 392.0 0 0

Figure 5: Total constituents pruned at all levels
for WSJ section 23, sentences of length < 100

... at no loss in f-score with their grammar.

Summary

PCFG parsing one of the most successful fields of
NLP research.

Current parsers are fast and quite accurate.

» in practice, most people use Berkeley or Stanford parser
for good speed-accuracy-convenience tradeoft

Techniques from PCFG parsing carry over to many
other problems in computational linguistics.

