Training PCFGs

Computational Linguistics

Alexander Koller

29 November 2019

Probabilistic CFGs

S> NP VP
NP - Det N
NP > 1

N> N PP

N > elephant
N - pyjamas

1.0
0.8
0.2
0.4

0.3

[0.3]

VP > V NP
VP > VP PP
V - shot
PP > P NP
P - In
Det - an
Det > my

0.5
0.5
1.0
1.0
1.0
0.5
0.5

(let’s pretend for simplicity that Det = PRP$)

Parse trees

p = 0.00072 p = 0.00057
s
NP/ \VP
S 0.2 0.5 N
NP/ \'P | Dm

0.2 O_N
VP/ P 0.5 AA\
N PP
0.5
7O 7 X TN

P P
p NP
0.8 0.8
D(\N D(\N D{O-%
0.5| 03 | 0.5] 0.3 1 05] 10.3
| shot an elephant in my pyjamas I shot an elephant in ~"“my pyjamas

T

“correct” = more probable parse tree

Today

e Parameters of PCFG = rule probabilities.

e How do we learn parameters from corpora?

» maximum likelihood estimation
» “hard EM” using Viterbi

» “soft EM” using the inside-outside algorithm

ML Estimation

Assume we have a treebank.

» that is, every sentence annotated by hand with its
“correct” parse tree

Then we can use MLE to obtain rule probabilities:

C(A—-w) CA—w)
C(A—e) > C(A—w)

P(A — w) =

Standard way of parameter estimation in practice.
Works well, smoothing only needed for unknown
words (or replace by POS tags).

Example

S S
NP/ \IP NP/ \\VP
= T~ VP~ /\PP
S| NP
D(\?\I D(\ N pDet | N
| shot aln elepLant in nly pyjalmas 1 slept in nly pyjalmas
N > N PP [0] VP>TV NP [1/4]
N > elephant [1/3] VP >1V [1/4]

N - pyjamas [2/3] VP> VP PP [1/2]

Unsupervised estimation

e MLE works okay for English.

» German: Tiger treebank exists, but is hard for PCFGs,
e.g. because of free word order.

» most other languages: phrase structure annotations
unavailable, expensive to create > unsupervised methods?

e Unsupervised methods:

» provide CFG, learn parameters from unannotated corpus
» show first “hard EM”, then “soft EM”

» ideas instructive and generalize to other problems

“"Hard” aka Viterbi EM

e In the absence of syntactic annotations,
learner must invent its own parse trees.

e Viterbi EM:

» start with some parameter estimate

» produce “syntactic annotations” by computing best tree
for each sentence using Viterbi

» apply MLE to re-estimate parameters

» repeat as long as needed

e This is not real EM!

Example

N > N PP [0.6]
N > elephant [0.2]

N - pyjamas [0.2]

VP>TV NP [1/3]
VP > 1V [1/3]
VP> VPPP [1/3]

/S\ p = 0.00026
0.00014
NP VP (vs)
/\ p
T =
N\
v N
K /\P
e
D(\ N
I shot an |elephant | in nly pyjalmas

p = 0.00178
S

~
NP/ VP

/

VP /\PP
vV 1/ \P
Det ?\I

I slept in my | pyjamas

MLE on Viterbi parses

N > N PP [1/4] VP> TV NP [1/3]
N > elephant [1/4] VP > IV [1/3]
N - pyjamas [1/2] VP> VP PP [1/3]
p = 0.00044 p = 0.00889

q (vs 0.00033) .

NP/ \rp NP/ \’P
T, v e
TmP /\P IV /\P
| U I
I shot an elephant 1n my pyjamas 1 slept 1In my pyjamas

Some things to note

e In this example, the likelihood increased.

» this need not always be the case for Viterbi EM

e Viterbi EM commits to a single parse tree per
sentence. This has advantages and disadvantages:

» parse tree easy to compute, and can simply apply MLE

» ignores all uncertainty we had about correct parse
(winning parse tree takes all)

Towards “real” (aka “soft”) EM

idea: weighted counting of rules in all parse trees

Viterbi-EM
1 - Ctl(l’) + 0 - Ctz(r) + 0 - Ct3(r) + 0 - Ct4(I')

A A A A

P(t1 w) - Cu(r) + P(tz w) - Cp(r) + P(t3 w) - Cui(r) + P(t4 w) - Cu(r)

Expected counts

e Define expected count of rule A > B C,
based on previous parameter estimate.

E(A—»BC)=>» P(t|w) -Cy(A— BC)
teT

e If we have them, can re-estimate parameters:

P(A— BC(C)= S(éaic;))

e Challenge: How to compute E(A > B C) efhiciently?

» we assume grammars in CNF here

Fundamental idea

E(A—BC)=) P(t|w)-Cy(A— BC)
teT
1
_P_w)z P(t)-Cy(A— B C)
teT
1 L
_% t)~ZHruleforz,],kmtls

teT 1,7,k

\’N
<.
x> U

teT

A — B (]

_ (S‘(S‘P ||ru1ef0ri,j,kintisA%BC’H)

Al

t of this form

~~—

call this term u(A > B G, i, j, k)

S
"/\

W1 N Wp

(note that P(t, w) = P(t))

w(A— BCi,j5,k) =

N
dlzs:*wl...wilAU/*/\

Computing
>, P@)

t of this form

Wi A Wp

dz: B =* Wi ... Wj-1 /\ /\ d3: C =* Wj
\J Wi Wj-1 Wj Wk-1 \/
wWA—BC,ij k) = > P(t)

t of this form

Y. P(d)-P(A— BC): Pdy) - P(ds)
t of this form

(ZPd1> P(A— BC)- (ZP@) (%P(d@)

Computing

WA= BCij k)=) P(t)=a(Aik)- P(A—= BC)-B(B,i,j) B(C,j,k)

t of this form
/i(

Wi A Wjp

7\ /\
a1y

=
inside probability outside probability

B(B.i.j)= Y P(d) A, i, k) = > P(d)

d >k d >k
B = Wi... Wj—1 S = wi... W; —1Awg...wy,

Inside probabilities

B(B,i,j)= Y, P(d)

d >k
B = Wi...Wj—1

A special case:
/ \ P(w) = B(S,1,n+1)
B C

/3(Awi7i%_)'_.wal—%>U%)
B(A,ik)= Y P(A— BC)-B(B,i,j) B(C,jk)
A—B C

1<g<k

Outside probabilities
a(A, i, k) = Z P(d)

d >k
S = wi..wi—1Awg... Wy

Y P(B—AC)-B(Ck,j)-a(B,i,j)+ » P(B—CA)-B(C,j]i) aB,jk)

B—AC B—C A
E<i<n 1<9<1

base case:
a(A,1,n+1)=1iff A=S

Wl coe W1 coe Wk coe W] WI] Wl coe W] coe W1 coe Wk WIl

The Inside-Outside Algorithm

e Start with some initial estimate of parameters.
e For each sentence w, compute a, 3, and .

e Compute expected counts E(A > B C).

» sum expected counts over all sentences

» remember that P(w) = (S, 1, n+1)

e Re-estimate P(A > B C) from expected counts.

e Iterate until convergence.

Some remarks

Inside-outside increases likelihood Charniak § Perei
in each step.

But huge problems with local maxima.

» Carroll & Charniak 92 find 300 diftferent local maxima for
300 different initial parameter estimates.

» Improve by partially bracketing strings (Pereira & Schabes 92).

Therefore, EM doesn't really work for totally
unsupervised PCFG training.

But extremely useful in refining existing grammars
(Berkeley parser; see next time).

Summary

Learning parameters of PCFGs:

» maximum likelihood estimation from raw text
» “hard EM": iterate MLE on Viterbi parses

» EM: use inside-outside algorithm with expected rule counts

PCFG parsing with MLE parse gets f-score in low 70’s.
Will improve on this next time (state of the art: 93).

Have assumed that CFG is given and only parameters
are to be learned. Will fix this later in this course.

