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Probabilistic CFGs
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(let’s pretend for simplicity that Det = PRP$)




Parse trees
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“correct” = more probable parse tree




Today

e Parameters of PCFG = rule probabilities.

e How do we learn parameters from corpora?

» maximum likelihood estimation
» “hard EM” using Viterbi

» “soft EM” using the inside-outside algorithm



ML Estimation

Assume we have a treebank.

» that is, every sentence annotated by hand with its
“correct” parse tree

Then we can use MLE to obtain rule probabilities:

C(A—-w)  CA—w)
C(A—e) > C(A—w)

P(A — w) =

Standard way of parameter estimation in practice.
Works well, smoothing only needed for unknown
words (or replace by POS tags).
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Unsupervised estimation

e MLE works okay for English.

» German: Tiger treebank exists, but is hard for PCFGs,
e.g. because of free word order.

» most other languages: phrase structure annotations
unavailable, expensive to create > unsupervised methods?

e Unsupervised methods:

» provide CFG, learn parameters from unannotated corpus
» show first “hard EM”, then “soft EM”

» ideas instructive and generalize to other problems



“"Hard” aka Viterbi EM

e In the absence of syntactic annotations,
learner must invent its own parse trees.

e Viterbi EM:

» start with some parameter estimate

» produce “syntactic annotations” by computing best tree
for each sentence using Viterbi

» apply MLE to re-estimate parameters

» repeat as long as needed

e This is not real EM!



Example
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MLE on Viterbi parses

N > N PP [1/4] VP> TV NP [1/3]
N > elephant  [1/4] VP > IV [1/3]
N - pyjamas  [1/2] VP> VP PP [1/3]
p = 0.00044 p = 0.00889
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Some things to note

e In this example, the likelihood increased.

» this need not always be the case for Viterbi EM

e Viterbi EM commits to a single parse tree per
sentence. This has advantages and disadvantages:

» parse tree easy to compute, and can simply apply MLE

» ignores all uncertainty we had about correct parse
(winning parse tree takes all)



Towards “real” (aka “soft”) EM

idea: weighted counting of rules in all parse trees

Viterbi-EM
1 - Ctl(l’) + 0 - Ctz(r) + 0 - Ct3(r) + 0 - Ct4(I')

A A A A

P(t1 w) - Cu(r) + P(tz w) - Cp(r) + P(t3 w) - Cui(r) + P(t4 w) - Cu(r)




Expected counts

e Define expected count of rule A > B C,
based on previous parameter estimate.

E(A—»BC)=>» P(t|w) -Cy(A— BC)
teT

e If we have them, can re-estimate parameters:

P(A— BC(C)= S(éaic;))

e Challenge: How to compute E(A > B C) efhiciently?

» we assume grammars in CNF here



Fundamental idea
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w(A— BCi,j5,k) =
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Computing
>, P@)

t of this form
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t of this form

Y. P(d)-P(A— BC): Pdy) - P(ds)
t of this form
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Computing

WA= BCij k)= )  P(t)=a(Aik)- P(A—= BC)-B(B,i,j) B(C,j,k)

t of this form
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Inside probabilities

B(B,i,j)= Y, P(d)

d >k
B = Wi...Wj—1

A special case:
/ \ P(w) = B(S,1,n+1)
B C
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Outside probabilities
a(A, i, k) = Z P(d)
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The Inside-Outside Algorithm

e Start with some initial estimate of parameters.
e For each sentence w, compute a, 3, and .

e Compute expected counts E(A > B C).

» sum expected counts over all sentences

» remember that P(w) = (S, 1, n+1)

e Re-estimate P(A > B C) from expected counts.

e Iterate until convergence.



Some remarks

Inside-outside increases likelihood Charniak § Perei
in each step.

But huge problems with local maxima.

» Carroll & Charniak 92 find 300 diftferent local maxima for
300 different initial parameter estimates.

» Improve by partially bracketing strings (Pereira & Schabes 92).

Therefore, EM doesn't really work for totally
unsupervised PCFG training.

But extremely useful in refining existing grammars
(Berkeley parser; see next time).




Summary

Learning parameters of PCFGs:

» maximum likelihood estimation from raw text
» “hard EM": iterate MLE on Viterbi parses

» EM: use inside-outside algorithm with expected rule counts

PCFG parsing with MLE parse gets f-score in low 70’s.
Will improve on this next time (state of the art: 93).

Have assumed that CFG is given and only parameters
are to be learned. Will fix this later in this course.



