
The CKY Parser

Computational Linguistics 

Alexander Koller

19 November 2019

Context-free grammars
T = {John, ate, sandwich, a}
N = {S, NP, VP, V, N, Det}; start symbol: S  

Production rules: 
S → NP VP 
NP → Det N 
VP → V NP

V → ate 
NP → John

Det → a 
N → sandwich

John

ate

NP

V

S

VP

NP

Det

a sandwich

N

Shift-Reduce Parsing
T = {John, ate, sandwich, a}
N = {S, NP, VP, V, N, Det}; start symbol: S  

Production rules: 
S → NP VP 
NP → Det N

V → ate 
NP → John

Det → a 
N → sandwich

 
VP → V NP

John ate a sandwich

ate a sandwich John

ate a sandwich NP

a sandwich NP ate

a sandwich NP V

ε

ε

ε

ε

NP V Det N

NP V NP

NP VP

S

…

sh
ift

re
du

ce
sh

ift
re

du
ce

re
du

ce
re

du
ce

re
du

ce

Schema for shift-reduce

• Items are of the form (s,w’) where w’ is a suffix of
the input string w, and s is the stack.
‣ Claim of this item: Underlying cfg allows the derivation 

s w’ ⇒* w

‣ Call item true if its claim is true.

• Start item: (ε, w); goal item: (S, ε)

• Parsing rules:

(s, a ⋅ w’)

(s ⋅ a, w’)
(shift)

(s ⋅ s’, w’) A → s’ in P

(s ⋅ A, w’)
(reduce)

Soundness

• Show: If SR recognizer claims w ∈ L(G), then it is true.

• Prove by induction over length k of SR derivation  
that all items that SR derives from start item are true.
‣ k = 0: Item is start item (ε, w). This is trivially true.

‣ k → k+1: Any derivation of k+1 steps ends in a last step.
- Shift: (ε, w) →* (s, a w’) → (s a, w’). 

By induction hypothesis, (s, a w’) is true, i.e.: s a w’ ⇒* w. 
Thus, (s a, w’) is obviously true as well.

- Reduce: (ε, w) →* (s s’, w’) → (s A, w’). 
By induction hypothesis, (s s’, w’) is true, i.e.: s s’ w’ ⇒* w. 
Thus we have s A w’ ⇒ s s’ w’ ⇒* w, i.e. (s A, w’) is true.

Completeness

• Show: If w ∈ L(G), then SR recognizer claims it is true.

• Prove by induction over length of CFG derivation that
if A ⇒* wi … wk, then (ε, wi … wk) →* (A, ε).

‣ length = 1: one shift + one reduce does it

‣ length k → k+1: A ⇒ B C ⇒* wi … wj-1 wj … wk 
 
 
Then by induction hypothesis, can derive 
(ε, wi … wk) →* (B, wj … wk) →* (BC, ε) → (A, ε)

SR

SR SR R

((

B C

Runtime of algorithms

• It is not enough to find an algorithm that is sound
and complete. It should also be efficient.

• Runtime of an algorithm is measured:
‣ as a function of input size n

‣ for the worst case (= inputs of that size on which the
algorithm runs longest)

‣ asymptotically (= ignore constant factors)

A simple example

• Problem: test whether list of numbers is sorted.
‣ given list L of ints of length n:

‣ are there indices 1 ≤ i < j ≤ n s.t. Li > Lj?

• Let’s look at two algorithms for this problem.

Runtime comparison

def quadratic_issorted(L):
 for i in range(len(L)):
 for j in range(i+1, len(L)):
 if L[j] < L[i]:
 return False
 return True

def linear_issorted(L):
 for i in range(len(L)-1):
 if L[i] > L[i+1]:
 return False
 return True

len(L) quadratic linear

100

1000

10000

100.000

1.000.000

Runtime

0.5 ms

40 ms

4.5 sec

464 sec

0.02 ms

0.1 ms

1.2 ms

13 ms

179 ms

≈ n2 ∙ 45 ns ≈ n ∙ 120 ns

Analysis

• Important parameters:
‣ input size n = len(L), i.e. length of list

‣ worst case = L is sorted; every loop iterated n times

‣ don’t really care about time per iteration, linear is always
faster if n grows large enough

• We can get a good sense of the algorithm’s runtime
by saying it grows linearly or quadratically with n.
‣ abstraction over implementation details and hardware

‣ asymptotic comparison of runtime classes

O Notation

• Let f, g be functions. Then we define:  
 
 
 

• Read “f is O of g”; “=“ denotes membership in a
runtime class, not equality.

• Usually take the smallest g such that f = O(g).

f = O(g) iff 
 exist c, n0 s.t. f(n) ≤ c⋅g(n) f.a. n ≥ n0

Illustration
f = O(g) iff 
 exist c, n0 s.t. f(n) ≤ c⋅g(n) f.a. n ≥ n0

f(n)

c⋅g(n)

nn0

Back to the example
f = O(g) iff 
 exist c, n0 s.t. f(n) ≤ c⋅g(n) f.a. n ≥ n0

def quadratic_issorted(L):
 for i in range(len(L)):
 for j in range(i+1, len(L)):
 if L[j] < L[i]:
 return False
 return True

Runtime f(n) ≈ n2 ∙ 45 ns = O(n2)
“quadratic algorithm”

def linear_issorted(L):
 for i in range(len(L)-1):
 if L[i] > L[i+1]:
 return False
 return True

Runtime f(n) ≈ n ∙ 120 ns = O(n)
“linear algorithm”

Hierarchy of runtime classes

• For all c, c’, we have c⋅n ≤ c’⋅n2 after a certain point: 
 
 

• For large n, low-rank polynomials are faster:
‣ O(n) linear < O(n2) quadratic 

(even for n + 5, 100 ∙ n - 27 etc.)

‣ O(n2) quadratic < O(n3) cubic

‣ etc.

Analyzing Shift-Reduce

S → B S 
T → C T

B → b 
C → b

S → c 
T → c

C C C T→*

b b b c

C C B T
C B C T

T→* ✘

→*
C B B T

✘

✘
C B T

→*
→*
→*

✘

B B B S→*
…

→* S ✔

Analyzing Shift-Reduce

S → B S 
T → C T

B → b 
C → b

C C C T→*

b b b c

C C B T
C B C T

T→* ✘

→*
C B B T

✘

✘
C B T

→*
→*
→*

✘

B B B T→* ✘

…

S → c 
T → c

Analyzing Shift-Reduce

• If string has length n and grammar has k
nonterminals, then there are O(kn) ways of
assigning strings of nonterminals to words.

• These can all be explored, especially when the
string is not in the language.

Exponential runtime

• Worst case runtime of shift-reduce:  
roughly kn computation steps.

• Exponential functions grow faster than every
polynomial: if k > 1, then there is no m such that  
kn = O(nm).

Polynomial vs. exponential

• We often distinguish between polynomial and
exponential runtime.
• Rule of thumb: exponential = too slow for practical use.

• Is there a polynomial algorithm for the word
problem?

Chomsky Normal Form

• A cfg is in Chomsky normal form (CNF) if each  
of its production rules has one of these two forms:
‣ A → B C: right-hand side is exactly two nonterminals

‣ A → c: right-hand side is exactly one terminal

• For every cfg G, there is a weakly equivalent cfg G’
which is in CNF.
‣ that is, L(G) = L(G’)

Chomsky

The CKY Algorithm

• Simplest and most-used chart parser for cfgs in CNF.

• Developed independently in the 1960s by  
John Cocke, Daniel Younger, and Tadao Kasami.
‣ sometimes also called CYK algorithm

• Bottom-up algorithm for discovering statements of
the form “A ⇒* wi ... wk-1 ?”

Cocke Kasami

The CKY Recognizer
S → NP VP 
NP → Det N 
VP → V NP

V → ate 
NP → John

Det → a 
N → sandwich

NP

V

Det

NNPVPS

John

ate

a

sandwich

…
 sa

nd
w

ic
h

…
 a

…
 at

e

…
 Jo

hn Cell at column i, row k: 
{ A | A ⇒* wi … wk-1 }k

=
2

3
4

5

i = 1 2 3 4

Chart

S ⇒* w

The CKY Recognizer

S

S

SSS

S

S → S S S → a

a

…
 a

k
=

2
3

4

i = 1 2 3

a

…
 a

a

…
 a

CKY recognizer: pseudocode
Data structure: Ch(i,k) eventually contains {A | A ⇒* wi ... wk-1} 
(initially all empty). 
 
for each i from 1 to n: 
 for each production rule A → wi: 
 add A to Ch(i, i+1) 

for each width b from 2 to n: 
 for each start position i from 1 to n-b+1:  
 for each left width k from 1 to b-1: 
 for each B ∈ Ch(i, i+k) and C ∈ Ch(i+k,i+b): 
 for each production rule A → B C: 
 add A to Ch(i,i+b)

claim that w ∈ L(G) iff S ∈ Ch(1,n+1)

Complexity

• Time complexity of CKY recognizer is O(n3), 
although number of parse trees grows exponentially.

• Space complexity of CKY recognizer is O(n2) 
(one cell for each substring).

• Efficiency depends crucially on CNF.  
Naive generalization of CKY to rules A → B1 … Br 
raises time complexity to O(nr+1).

Correctness

• Soundness: CKY only derives true statements.
‣ If CKY puts A into Ch(i,k), then there is rule A → BC and  

some j with B ∈ Ch(i,j) and C ∈ Ch(j,k).

‣ Induction hypothesis: for shorter spans, have B ⇒* wi … wj-1. 
Thus A ⇒ B C ⇒* wi … wj-1 C ⇒* wi … wk-1

• Completeness: CKY derives all true statements.
‣ Each derivation A ⇒* wi … wk-1 starts with a first step; 

say A ⇒ B C ⇒* wi … wj-1 C ⇒* wi … wk-1

‣ Important: ensure that all nonterminals for shorter spans 
are known before filling Ch(i,k).

Recognizer to Parser

• Parser: need to construct parse trees from chart.

• Do this by memorizing how each A ∈ Ch(i,k) can 
be constructed from smaller parts.
‣ built from B ∈ Ch(i,j) and C ∈ Ch(j,k) using A → B C: 

store (B,C,j) in backpointer for A in Ch(i,k).

‣ analogous to backpointers in HMMs

• Once chart has been filled, enumerate trees
recursively by following backpointers,  
starting at S ∈ Ch(1,n+1).

Conclusion

• Context-free grammars: most popular grammar
formalism in NLP.
‣ there are also other, more expressive grammar formalisms

• CKY: most popular parser for cfgs.
‣ very simple polynomial algorithm, works well in practice

‣ there are also other, more complicated algorithms

• Next time: put parsing and statistics together.

