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Context-free grammars
T = {John, ate, sandwich, a} 
N = {S, NP, VP, V, N, Det}; start symbol: S  

Production rules: 
S → NP  VP 
NP → Det N 
VP → V NP

V → ate 
NP → John

Det → a 
N → sandwich
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Shift-Reduce Parsing
T = {John, ate, sandwich, a} 
N = {S, NP, VP, V, N, Det}; start symbol: S  

Production rules: 
S → NP  VP 
NP → Det N

V → ate 
NP → John

Det → a 
N → sandwich

 
VP → V NP
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Schema for shift-reduce

• Items are of the form (s,w’) where w’ is a suffix of 
the input string w, and s is the stack. 
‣ Claim of this item: Underlying cfg allows the derivation 

s w’ ⇒* w 

‣ Call item true if its claim is true. 

• Start item: (ε, w); goal item: (S, ε) 

• Parsing rules:

(s, a ⋅ w’)

(s ⋅ a, w’)
(shift)

(s ⋅ s’, w’)    A → s’ in P

(s ⋅ A, w’)
(reduce)



Soundness

• Show: If SR recognizer  claims w ∈ L(G), then it is true. 

• Prove by induction over length k of SR derivation  
that all items that SR derives from start item are true. 
‣ k = 0: Item is start item (ε, w). This is trivially true. 

‣ k → k+1: Any derivation of k+1 steps ends in a last step. 
- Shift: (ε, w) →* (s, a w’) → (s a, w’). 

By induction hypothesis, (s, a w’) is true, i.e.:  s a w’ ⇒* w. 
Thus, (s a, w’) is obviously true as well. 

- Reduce: (ε, w) →* (s s’, w’) → (s A, w’). 
By induction hypothesis, (s s’, w’) is true, i.e.:  s s’ w’ ⇒* w. 
Thus we have s A w’ ⇒ s s’ w’ ⇒* w, i.e. (s A, w’) is true.



Completeness

• Show: If w ∈ L(G), then SR recognizer claims it is true. 

• Prove by induction over length of CFG derivation that 
if A ⇒* wi … wk, then (ε, wi … wk) →* (A, ε). 

‣ length = 1: one shift + one reduce does it 

‣ length k → k+1: A ⇒ B C ⇒* wi … wj-1 wj … wk 
 
 
Then by induction hypothesis, can derive 
(ε, wi … wk) →* (B, wj … wk) →* (BC, ε) → (A, ε)
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Runtime of algorithms

• It is not enough to find an algorithm that is sound 
and complete. It should also be efficient. 

• Runtime of an algorithm is measured: 
‣ as a function of input size n 

‣ for the worst case (= inputs of that size on which the 
algorithm runs longest) 

‣ asymptotically (= ignore constant factors)



A simple example

• Problem: test whether list of numbers is sorted. 
‣ given list L of ints of length n: 

‣ are there indices 1 ≤ i < j ≤ n s.t. Li > Lj? 

• Let’s look at two algorithms for this problem.



Runtime comparison

def quadratic_issorted(L):
    for i in range(len(L)):
        for j in range(i+1, len(L)):
            if L[j] < L[i]:
                return False
    return True

def linear_issorted(L):
    for i in range(len(L)-1):
        if L[i] > L[i+1]:
            return False
    return True

len(L) quadratic linear
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Analysis

• Important parameters: 
‣ input size n = len(L), i.e. length of list 

‣ worst case = L is sorted; every loop iterated n times 

‣ don’t really care about time per iteration, linear is always 
faster if n grows large enough 

• We can get a good sense of the algorithm’s runtime 
by saying it grows linearly or quadratically with n. 
‣ abstraction over implementation details and hardware 

‣ asymptotic comparison of runtime classes



O Notation

• Let f, g be functions. Then we define:  
 
 
 

• Read “f is O of g”; “=“ denotes membership in a 
runtime class, not equality. 

• Usually take the smallest g such that f = O(g).

f = O(g)  iff 
   exist c, n0 s.t. f(n) ≤ c⋅g(n) f.a. n ≥ n0



Illustration
f = O(g)  iff 
   exist c, n0 s.t. f(n) ≤ c⋅g(n) f.a. n ≥ n0

f(n)

c⋅g(n)

nn0



Back to the example
f = O(g)  iff 
   exist c, n0 s.t. f(n) ≤ c⋅g(n) f.a. n ≥ n0

def quadratic_issorted(L):
    for i in range(len(L)):
        for j in range(i+1, len(L)):
            if L[j] < L[i]:
                return False
    return True

Runtime f(n) ≈ n2 ∙ 45 ns = O(n2) 
“quadratic algorithm”

def linear_issorted(L):
    for i in range(len(L)-1):
        if L[i] > L[i+1]:
            return False
    return True

Runtime f(n) ≈ n ∙ 120 ns = O(n) 
“linear algorithm”



Hierarchy of runtime classes

• For all c, c’, we have c⋅n  ≤  c’⋅n2 after a certain point: 
 
 

• For large n, low-rank polynomials are faster: 
‣ O(n) linear < O(n2) quadratic 

(even for n + 5, 100 ∙ n - 27 etc.) 

‣ O(n2) quadratic < O(n3) cubic 

‣ etc.



Analyzing Shift-Reduce

S → B S 
T → C T

B → b 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S → c 
T → c
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Analyzing Shift-Reduce

S → B S 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Analyzing Shift-Reduce

• If string has length n and grammar has k 
nonterminals, then there are O(kn) ways of 
assigning strings of nonterminals to words. 

• These can all be explored, especially when the 
string is not in the language.



Exponential runtime

• Worst case runtime of shift-reduce:  
roughly kn computation steps. 

• Exponential functions grow faster than every 
polynomial: if k > 1, then there is no m such that  
kn = O(nm).



Polynomial vs. exponential

• We often distinguish between polynomial and 
exponential runtime.  
• Rule of thumb: exponential = too slow for practical use. 

• Is there a polynomial algorithm for the word 
problem?



Chomsky Normal Form

• A cfg is in Chomsky normal form (CNF) if each  
of its production rules has one of these two forms: 
‣ A → B C: right-hand side is exactly two nonterminals 

‣ A → c: right-hand side is exactly one terminal 

• For every cfg G, there is a weakly equivalent cfg G’ 
which is in CNF. 
‣ that is, L(G) = L(G’)

Chomsky



The CKY Algorithm

• Simplest and most-used chart parser for cfgs in CNF. 

• Developed independently in the 1960s by  
John Cocke, Daniel Younger, and Tadao Kasami. 
‣ sometimes also called CYK algorithm 

• Bottom-up algorithm for discovering statements of 
the form “A ⇒* wi ... wk-1 ?”

Cocke Kasami



The CKY Recognizer
S → NP  VP 
NP → Det N 
VP → V NP

V → ate 
NP → John

Det → a 
N → sandwich
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The CKY Recognizer
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CKY recognizer: pseudocode
Data structure: Ch(i,k) eventually contains {A | A ⇒* wi ... wk-1} 
(initially all empty). 
 
for each i from 1 to n: 
    for each production rule A → wi: 
        add A to Ch(i, i+1) 

for each width b from 2 to n: 
    for each start position i from 1 to n-b+1:  
        for each left width k from 1 to b-1: 
            for each B ∈ Ch(i, i+k) and C ∈ Ch(i+k,i+b): 
               for each production rule A → B C: 
                   add A to Ch(i,i+b) 

claim that w ∈ L(G) iff S ∈ Ch(1,n+1)



Complexity

• Time complexity of CKY recognizer is O(n3), 
although number of parse trees grows exponentially. 

• Space complexity of CKY recognizer is O(n2) 
(one cell for each substring). 

• Efficiency depends crucially on CNF.  
Naive generalization of CKY to rules A → B1 … Br 
raises time complexity to O(nr+1).



Correctness

• Soundness: CKY only derives true statements. 
‣ If CKY puts A into Ch(i,k), then there is rule A → BC and  

some j with B ∈ Ch(i,j) and C ∈ Ch(j,k). 

‣ Induction hypothesis: for shorter spans, have B ⇒* wi … wj-1. 
Thus A ⇒ B C ⇒* wi … wj-1 C ⇒* wi … wk-1 

• Completeness: CKY derives all true statements. 
‣ Each derivation A ⇒* wi … wk-1 starts with a first step; 

say A ⇒ B C ⇒* wi … wj-1 C ⇒* wi … wk-1 

‣ Important: ensure that all nonterminals for shorter spans 
are known before filling Ch(i,k).



Recognizer to Parser

• Parser: need to construct parse trees from chart. 

• Do this by memorizing how each A ∈ Ch(i,k) can 
be constructed from smaller parts. 
‣ built from B ∈ Ch(i,j) and C ∈ Ch(j,k) using A → B C: 

store (B,C,j) in backpointer for A in Ch(i,k). 

‣ analogous to backpointers in HMMs 

• Once chart has been filled, enumerate trees 
recursively by following backpointers,  
starting at S ∈ Ch(1,n+1).



Conclusion

• Context-free grammars: most popular grammar 
formalism in NLP. 
‣ there are also other, more expressive grammar formalisms 

• CKY: most popular parser for cfgs. 
‣ very simple polynomial algorithm, works well in practice 

‣ there are also other, more complicated algorithms 

• Next time: put parsing and statistics together.


