Context-free Grammars

Computational Linguistics

Alexander Koller

15 November 2019

Sentences have structure

noun	verb phrase
verb	noun phrase
	determiner

Sentences have structure

Record it conveniently in *phrase structure tree*.

Ambiguity

Special challenge: sentences can have many possible structures.

This sentence is example of *attachment ambiguity*.

Grammars

- A *grammar* is a finite device for describing large (possibly infinite) set of strings.
 - strings = NL expressions of various types
 - grammar captures linguistic knowledge about syntactic structure
- There are many different grammar formalisms that are being used in NLP.
- In this course we focus on *context-free grammars*.

Context-free grammars

- Context-free grammar (cfg) G is 4-tuple (N,T,S,P):
 - N and T are disjoint finite sets of symbols:
 T = *terminal* symbols; N = *nonterminal* symbols.
 - $S \in N$ is the *start symbol*.
 - ▶ P is a finite set of *production rules* of the form $A \rightarrow w$, where A is nonterminal and w is a string from $(N \cup T)^*$.
- Why "context-free"?
 - Left-hand side of production is a single nonterminal A.
 - Rule can't look at context in which A appears.
 - *Context-sensitive* grammars can do that.

Example

T = {John, ate, sandwich, a} N = {S, NP, VP, V, N, Det}; start symbol: S

Production rules: $S \rightarrow NP VP$ $NP \rightarrow Det N$ $VP \rightarrow V NP$

 $V \rightarrow ate$ NP \rightarrow John Det \rightarrow a N \rightarrow sandwich

Some important concepts

• One-step derivation relation \Rightarrow :

 $w_1 A w_2 \Rightarrow w_1 w w_2$ iff A → w is in P (w_1, w_2, w are strings from (N \cup T)*)

- *Derivation* relation \Rightarrow^* is reflexive, transitive closure: $w \Rightarrow^* w_n \text{ if } w \Rightarrow w_1 \Rightarrow ... \Rightarrow w_n \text{ (for some } n \ge 0)$
- Language $L(G) = \{ w \in T^* \mid S \Rightarrow^* w \}$

Derivations and parse trees

Parse tree provides readable, high-level view of derivation.

Big languages

Number of parse trees can grow exponentially in string length.

Recognition and parsing

- Let G be a cfg and w be a string.
- Word problem: is $w \in L(G)$?
 - Algorithms that solve it are called *recognizers*.
- *Parsing problem:* enumerate all parse trees of w.
 - Algorithms that solve it are called *parsers*.
- Every parser also solves the word problem.

Parsing algorithms

- How can we solve the word and parsing problem so systematically that we can implement it?
- One simple approach: shift-reduce algorithm (here: only for the word problem).
- Next time: Analyze efficiency of SR and replace it with faster algorithm: CKY.

Shift-Reduce Parsing

Shift-Reduce Parsing

- Read input string step by step. In each step, we have
 - the remaining input words we have not shifted yet
 - a *stack* of terminal and nonterminal symbols
- In each step, apply a rule:
 - Shift: moves the next input word to the top of the stack
 - Reduce: applies a production rule to replace top of stack with the nonterminal on the left-hand side
- Sentence is in language of cfg iff we can read the whole string and stack contains only start symbol.

Shift-Reduce Parsing

- Shift rule: (s, $a \cdot w$) \rightarrow ($s \cdot a, w$)
- Reduce rule: $(s \cdot w', w) \rightarrow (s \cdot A, w)$ if $A \rightarrow w'$ in P
- Start: (ε, w)
- Apply rules *nondeterministically*: Claim w ∈ L(G) if there *exists* some sequence of steps that derive (S, ε) from (ε, w).

Nondeterminism

- Claim that string is in language of cfg iff (S, ε) can be derived by *any* sequence of shift and reduce steps.
- This is very important because there are many stack-string pairs where multiple rules can be applied:
 - shift-reduce conflict
 - reduce-reduce conflict
- In practice, we need to try all sequences out.
 - Compilers for programming languages avoid this by careful language design: no ambiguity in grammar.

Parsing Schemata

- Parsing algorithm derives claims about the string. Record such claims in *parse items*.
- At each step, apply a *parsing rule* to infer new parse items from earlier ones.
- If there is a way to derive a *goal item* from the *start item(s)* for a given input string, then claim that this string is in the language.

Schema for shift-reduce

- Items are of the form (s,w') where w' is a suffix of the input string w, and s is the stack.
 - Claim of this item: Underlying cfg allows the derivation
 s w' ⇒* w
 - Call item *true* if its claim is true.
- Start item: (ε, w); goal item: (S, ε)
- Parsing rules:

$$\frac{(s, a \cdot w')}{(s \cdot a, w')} \quad (shift) \qquad \qquad \frac{(s \cdot s', w') \quad A \rightarrow s' \text{ in } P}{(s \cdot A, w')} \quad (reduce)$$

Implementing schemas

- Can generally implement parser for given schema in the following way:
 - maintain an *agenda:* queue of items that we have discovered, but not yet attempted to combine with other items
 - maintain a *chart* of all seen items for the sentence

Correctness of shift-reduce

- Why should we believe that the SR parser always makes correct claims about the word problem?
- To convince ourselves, we need to prove:
 - soundness: SR recognizer only claims w ∈ L(G) if this is true;
 - *completeness:* if w ∈ L(G) is true, then SR recognizer claims it is.

Soundness

- Show: If SR recognizer claims $w \in L(G)$, then it is true.
- Prove by induction over length k of SR derivation that all items that SR derives are true.
 - k = 0: Item is start item (ε , w). This is trivially true.
 - $k \rightarrow k+1$: Any derivation of k+1 steps ends in a last step.
 - Shift: (ε, w) →* (s, a w') → (s a, w').
 By induction hypothesis, (s, a w') is true, i.e.: s a w' ⇒* w.
 Thus, (s a, w') is obviously true as well.
 - Reduce: (ε, w) →* (s s', w') → (s A, w').
 By induction hypothesis, (s s', w') is true, i.e.: s s' w' ⇒* w.
 Thus we have s A w' ⇒ s s' w' ⇒* w, i.e. (s A, w') is true.

Completeness

- Show: If $w \in L(G)$, then SR recognizer claims it is true.
- Prove by induction over length of CFG derivation that if $A \Rightarrow^* w_i \dots w_k$, then $(\varepsilon, w_i \dots w_k) \underset{SR}{\Rightarrow}^* (A, \varepsilon)$.
 - length = 1: one shift + one reduce does it
 - length $k \rightarrow k+1$: $A \Rightarrow B \ C \Rightarrow^* \underbrace{w_i \dots w_{j-1}}_{B} \underbrace{w_j \dots w_k}_{C}$

Then by induction hypothesis, can derive $(\varepsilon, w_i \dots w_k) \xrightarrow{>}{}^{*} (B, w_j \dots w_k) \xrightarrow{>}{}^{*} (BC, \varepsilon) \xrightarrow{>}{}_{R} (A, \varepsilon)$

Conclusion

- Context-free grammars: most popular grammar formalism in NLP.
- Parsing algorithms.
 - today, shift-reduce
 - next time, CKY
- Outlook:
 - combine CFG parsing with statistics
 - more expressive grammar formalisms