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Let’s play a game

• I will write a sentence on the board. 

• Each of you, in turn, gives me a word to continue 
that sentence, and I will write it down.



Let’s play another game

• You write a word on a piece of paper. 

• You get to see the piece of paper of your neighbor, 
but none of the earlier words. 

• In the end, I will read the sentence you wrote.



Statistical models in NLP

• Generative statistical model of language:  
pd P(w) over NL expressions that we can observe. 
‣ w may be complete sentences or smaller units 

‣ will later extend this to pd P(w, t) with hidden random 
variables t 

• Assumption: A corpus of observed sentences w is 
generated by repeatedly sampling from P(w). 

• We try to estimate the parameters of the prob dist 
from the corpus, so we can make predictions about 
unseen data.



Predictive text models

http://objectdreams.tumblr.com/



Predictive text models

https://www.theverge.com/2018/5/31/17405042/botnik-studios-predictive-writer-voicebox



Word-by-word random process

• A language model (LM) is a probability distribution 
P(w) over sentences. 

• Think of it as random process that generates 
sentences word by word:
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Word-by-word random process

• A language model (LM) is a probability distribution 
P(w) over sentences. 

• Think of it as random process that generates 
sentences word by word:

X1

copper

X2

is

X3

a

X4

metal



Process from our game

• Each of you = a random variable Xt;  
event “Xt = wt” means word at position t is wt. 

• When you chose wt, you could see the outcomes of 
the previous variables: X1 = w1, …, Xt-1 = wt-1. 

• Thus, Xt followed a pd

P (Xt = wt | X1 = w1, . . . , Xt�1 = wt�1)



Process from our game

• Assume that Xt follows some given PD 

• Then probability of the entire corpus (or sentence)  
w = w1 … wn is joint probability

P (Xt = wt | X1 = w1, . . . , Xt�1 = wt�1)

P (w1 . . . wn) = P (w1) · P (w2 | w1) · P (w3 | w1, w2)
· . . . · P (wn | w1, . . . , wn�1)



Process from our game

• Assume that Xt follows some given PD 

• Then probability of the entire corpus (or sentence)  
w = w1 … wn is joint probability

P (Xt = wt | X1 = w1, . . . , Xt�1 = wt�1)

P (w1 . . . wn) = P (w1) · P (w2 | w1) · P (w3 | w1, w2)
· . . . · P (wn | w1, . . . , wn�1)

How do we estimate these?



Statistical models

• We want to use prob theory to estimate a model of a 
generating process from observations about its 
outcomes. 

• Simpler case: we flip a coin 100 times and observe 
H 61 times. Should we believe that it is a fair coin? 
‣ observation: absolute freq C(H) = 61, C(T) = 39; 

thus relative freq f(H) = 0.61, f(T) = 0.39 

‣ model: assume rv X follows a Bernoulli distribution,  
i.e. X has two outcomes, and there is a value p such that  
P(X = H) = p and P(X = T) = 1 - p. 

‣ want to estimate the parameter p of this model



Fit of model and observations

• How do we quantify how well a model fits with the 
observations we made? 

• Out of the many possibilities, easiest is to look at 
the likelihood: probability P(O ; p) of the 
observations O given the values p for the model 
parameters. 

• Maximum likelihood estimation: find parameter 
values for which the likelihood of O is maximal.



Likelihood functions

(Wikipedia page on MLE; licensed from Casp11 under CC BY-SA 3.0)
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count C(H): 

likelihood L(O ; p) = pC(H) * (1-p)C(T) * binom(N, C(H))

N = 10



ML Estimation

• Goal: Find value for p that maximizes the likelihood 
of the observations. 

• For Bernoulli models, it is extremely easy to estimate 
the parameters that maximize the likelihood: 
‣ P(X = a) = f(a) 

‣ in the coin example above, just take p = f(H) 

• Can prove that relative frequency f is an ML estimator 
for a lot of different statistical models (Bernoulli, 
multinomial, etc.; see link on course page).



Parameters of the model

• Our model has one parameter for  
P(Xt = wt | w1, …, wt-1) for each t and w1, …, wt. 

• Can use maximum likelihood estimation:  
 

• Let’s say a natural language has 105 different words.  
How many tuples w1, … wt of length t? 
‣ t = 1: 105 

‣ t = 2: 1010 different contexts 

‣ t = 3: 1015; etc.

P (wt | w1, . . . , wt�1) =
C(w1 . . . wt�1wt)

C(w1 . . . wt�1)



Sparse data problem

• Typical corpus sizes: 
‣ Brown corpus: about 106 tokens 

‣ Gigaword corpus: about 109 tokens 

• Problem exacerbated by Zipf ’s Law: 
‣ Order all words by their absolute frequency in corpus  

(rank 1 = most frequent word). 

‣ Then log(absolute frequency) falls linearly with log(rank); 
i.e., most words are really rare. 

‣ Zipf ’s Law is very robust across languages and corpora.



Independence assumptions

• Let’s pretend that word at position t depends only 
on the words at positions t-1, t-2, …, t-k for some 
fixed k (Markov assumption of degree k). 

• Then we get an n-gram model, with n = k+1: 
 
 
for all t. 

• Special names for unigram models (n = 1),  
bigram models (n = 2), trigram models (n = 3). 
‣ Thus our second game was a bigram model.

P (Xt | X1, . . . , Xt�1) = P (Xt | Xt�k, . . . , Xt�1)



Independence assumptions

• We assume statistical independence of Xt from 
events that are too far in the past, although we 
know that this assumption is incorrect. 

• Typical tradeoff in statistical NLP: 
‣ if model is too shallow, it won’t represent important 

linguistic dependencies 

‣ if model is too complex, its parameters can’t be estimated 
accurately from the available data

modeling errors estimation errors

low n high n



Bigrams: an example

JOHN READ MOBY DICK
MARY READ A DIFFERENT BOOK

SHE READ A BOOK BY CHER

p(JOHN READ A BOOK)

= p(JOHN|•) p(READ|JOHN) p(A|READ) p(BOOK|A) p(•|BOOK)

= c(• JOHN)P
w c(• w)

c(JOHN READ)P
w c(JOHN w)

c(READ A)P
w c(READ w)

c(A BOOK)P
w c(A w)

c(BOOK •)P
w c(BOOK w)

= 1
3

1
1

2
3

1
2

1
2

⇡ 0.06

7

(Chen & Goodman 98)



n-grams: Evaluation

• Measure quality of n-gram model using perplexity 
PP(w) = P(w1 … wN)-1/N of test data w = w1 … wN. 

• To get honest picture of model’s performance, 
evaluate it on test data that was not used for training. 

• Maximum likelihood model for training corpus  
is not necessarily good for test corpus (overfitting).

training corpus

evaluation

test corpus

model



Bigrams: a problem

JOHN READ MOBY DICK
MARY READ A DIFFERENT BOOK

SHE READ A BOOK BY CHER

p(CHER READ A BOOK)

= p(CHER|•) p(READ|CHER) p(A|READ) p(BOOK|A) p(•|BOOK)

= c(• CHER)P
w c(• w)

c(CHER READ)P
w c(CHER w)

c(READ A)P
w c(READ w)

c(A BOOK)P
w c(A w)

c(BOOK •)P
w c(BOOK w)

= 0
3

0
1

2
3

1
2

1
2

= 0

8

(Chen & Goodman 98)



Unseen data

• ML estimate is “optimal” only for the corpus from 
which we computed it. 

• Usually does not generalize directly to new data. 
‣ Ok for unigrams, but there are so many bigrams. 

• ML estimate predicts probability of 0 for n-grams 
that were not observed in training. This is a disaster 
because product with 0 is always 0.



Smoothing techniques

• Basic idea: Replace ML estimate 
 
 
 
by estimate with adjusted bigram count 

• Redistribute counts from seen to unseen bigrams. 

• Generalizes easily to n-gram models with n > 2.

PML(wi | wi�1) =
C(wi�1wi)

C(wi�1)

P ⇤(wi | wi�1) =
C⇤(wi�1wi)

C(wi�1)



Smoothing
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Add-one Smoothing

• Count every bigram (seen or unseen) one more 
time than in corpus and normalize:

Plap(wi | wi�1) =
C(wi�1wi) + 1P
w(C(wi�1w) + 1)

=
C(wi�1wi) + 1

C(wi�1) + |V |
JOHN READ MOBY DICK

MARY READ A DIFFERENT BOOK
SHE READ A BOOK BY CHER

p(JOHN READ A BOOK)

= 1+1
11+3

1+1
11+1

1+2
11+3

1+1
11+2

1+1
11+2

⇡ 0.0001

p(CHER READ A BOOK)

= 1+0
11+3

1+0
11+1

1+2
11+3

1+1
11+2

1+1
11+2

⇡ 0.00003

10

|V| = 11, |seen bigram types| = 11  
⇒ 110 unseen bigrams

JOHN READ MOBY DICK
MARY READ A DIFFERENT BOOK

SHE READ A BOOK BY CHER

p(JOHN READ A BOOK)

= 1+1
11+3

1+1
11+1

1+2
11+3

1+1
11+2

1+1
11+2

⇡ 0.0001

p(CHER READ A BOOK)

= 1+0
11+3

1+0
11+1

1+2
11+3

1+1
11+2

1+1
11+2

⇡ 0.00003

10



Add-one Smoothing

• Easy to implement, but dramatically overestimates 
probability of unseen events. 
‣ In the Cher example: Plap(unseen | wi-1) ≥ 1/14;  

thus “count”(wi-1 unseen) ≈ 110 * 1/14 = 7.8. 

‣ Compare against 12 bigram tokens in training corpus. 

• Learn all about how to really do smoothing in the 
course “Statistical NLP”.



Conclusion

• Statistical models of natural language. 

• Language models with n-grams. 

• The problem of data sparseness. 

• Smoothing.


