
n-gram models

Computational Linguistics 

Alexander Koller

29 October 2019

Let’s play a game

• I will write a sentence on the board.

• Each of you, in turn, gives me a word to continue
that sentence, and I will write it down.

Let’s play another game

• You write a word on a piece of paper.

• You get to see the piece of paper of your neighbor,
but none of the earlier words.

• In the end, I will read the sentence you wrote.

Statistical models in NLP

• Generative statistical model of language:  
pd P(w) over NL expressions that we can observe.
‣ w may be complete sentences or smaller units

‣ will later extend this to pd P(w, t) with hidden random
variables t

• Assumption: A corpus of observed sentences w is
generated by repeatedly sampling from P(w).

• We try to estimate the parameters of the prob dist
from the corpus, so we can make predictions about
unseen data.

Predictive text models

http://objectdreams.tumblr.com/

Predictive text models

https://www.theverge.com/2018/5/31/17405042/botnik-studios-predictive-writer-voicebox

Word-by-word random process

• A language model (LM) is a probability distribution
P(w) over sentences.

• Think of it as random process that generates
sentences word by word:

X1 X2 X3 X4

Word-by-word random process

• A language model (LM) is a probability distribution
P(w) over sentences.

• Think of it as random process that generates
sentences word by word:

X1

copper

X2 X3 X4

Word-by-word random process

• A language model (LM) is a probability distribution
P(w) over sentences.

• Think of it as random process that generates
sentences word by word:

X1

copper

X2

is

X3 X4

Word-by-word random process

• A language model (LM) is a probability distribution
P(w) over sentences.

• Think of it as random process that generates
sentences word by word:

X1

copper

X2

is

X3

a

X4

Word-by-word random process

• A language model (LM) is a probability distribution
P(w) over sentences.

• Think of it as random process that generates
sentences word by word:

X1

copper

X2

is

X3

a

X4

metal

Process from our game

• Each of you = a random variable Xt;  
event “Xt = wt” means word at position t is wt.

• When you chose wt, you could see the outcomes of
the previous variables: X1 = w1, …, Xt-1 = wt-1.

• Thus, Xt followed a pd

P (Xt = wt | X1 = w1, . . . , Xt�1 = wt�1)

Process from our game

• Assume that Xt follows some given PD

• Then probability of the entire corpus (or sentence)  
w = w1 … wn is joint probability

P (Xt = wt | X1 = w1, . . . , Xt�1 = wt�1)

P (w1 . . . wn) = P (w1) · P (w2 | w1) · P (w3 | w1, w2)
· . . . · P (wn | w1, . . . , wn�1)

Process from our game

• Assume that Xt follows some given PD

• Then probability of the entire corpus (or sentence)  
w = w1 … wn is joint probability

P (Xt = wt | X1 = w1, . . . , Xt�1 = wt�1)

P (w1 . . . wn) = P (w1) · P (w2 | w1) · P (w3 | w1, w2)
· . . . · P (wn | w1, . . . , wn�1)

How do we estimate these?

Statistical models

• We want to use prob theory to estimate a model of a
generating process from observations about its
outcomes.

• Simpler case: we flip a coin 100 times and observe
H 61 times. Should we believe that it is a fair coin?
‣ observation: absolute freq C(H) = 61, C(T) = 39; 

thus relative freq f(H) = 0.61, f(T) = 0.39

‣ model: assume rv X follows a Bernoulli distribution,  
i.e. X has two outcomes, and there is a value p such that  
P(X = H) = p and P(X = T) = 1 - p.

‣ want to estimate the parameter p of this model

Fit of model and observations

• How do we quantify how well a model fits with the
observations we made?

• Out of the many possibilities, easiest is to look at
the likelihood: probability P(O ; p) of the
observations O given the values p for the model
parameters.

• Maximum likelihood estimation: find parameter
values for which the likelihood of O is maximal.

Likelihood functions

(Wikipedia page on MLE; licensed from Casp11 under CC BY-SA 3.0)

parameter p

lik
el

ih
oo

d
L(

O
 ;

p)

count C(H):

likelihood L(O ; p) = pC(H) * (1-p)C(T) * binom(N, C(H))

N = 10

ML Estimation

• Goal: Find value for p that maximizes the likelihood
of the observations.

• For Bernoulli models, it is extremely easy to estimate
the parameters that maximize the likelihood:
‣ P(X = a) = f(a)

‣ in the coin example above, just take p = f(H)

• Can prove that relative frequency f is an ML estimator
for a lot of different statistical models (Bernoulli,
multinomial, etc.; see link on course page).

Parameters of the model

• Our model has one parameter for  
P(Xt = wt | w1, …, wt-1) for each t and w1, …, wt.

• Can use maximum likelihood estimation:  
 

• Let’s say a natural language has 105 different words.  
How many tuples w1, … wt of length t?
‣ t = 1: 105

‣ t = 2: 1010 different contexts

‣ t = 3: 1015; etc.

P (wt | w1, . . . , wt�1) =
C(w1 . . . wt�1wt)

C(w1 . . . wt�1)

Sparse data problem

• Typical corpus sizes:
‣ Brown corpus: about 106 tokens

‣ Gigaword corpus: about 109 tokens

• Problem exacerbated by Zipf ’s Law:
‣ Order all words by their absolute frequency in corpus  

(rank 1 = most frequent word).

‣ Then log(absolute frequency) falls linearly with log(rank);
i.e., most words are really rare.

‣ Zipf ’s Law is very robust across languages and corpora.

Independence assumptions

• Let’s pretend that word at position t depends only
on the words at positions t-1, t-2, …, t-k for some
fixed k (Markov assumption of degree k).

• Then we get an n-gram model, with n = k+1: 
 
 
for all t.

• Special names for unigram models (n = 1),  
bigram models (n = 2), trigram models (n = 3).
‣ Thus our second game was a bigram model.

P (Xt | X1, . . . , Xt�1) = P (Xt | Xt�k, . . . , Xt�1)

Independence assumptions

• We assume statistical independence of Xt from
events that are too far in the past, although we
know that this assumption is incorrect.

• Typical tradeoff in statistical NLP:
‣ if model is too shallow, it won’t represent important

linguistic dependencies

‣ if model is too complex, its parameters can’t be estimated
accurately from the available data

modeling errors estimation errors

low n high n

Bigrams: an example

JOHN READ MOBY DICK
MARY READ A DIFFERENT BOOK

SHE READ A BOOK BY CHER

p(JOHN READ A BOOK)

= p(JOHN|•) p(READ|JOHN) p(A|READ) p(BOOK|A) p(•|BOOK)

= c(• JOHN)P
w c(• w)

c(JOHN READ)P
w c(JOHN w)

c(READ A)P
w c(READ w)

c(A BOOK)P
w c(A w)

c(BOOK •)P
w c(BOOK w)

= 1
3

1
1

2
3

1
2

1
2

⇡ 0.06

7

(Chen & Goodman 98)

n-grams: Evaluation

• Measure quality of n-gram model using perplexity
PP(w) = P(w1 … wN)-1/N of test data w = w1 … wN.

• To get honest picture of model’s performance,
evaluate it on test data that was not used for training. 

• Maximum likelihood model for training corpus  
is not necessarily good for test corpus (overfitting).

training corpus

evaluation

test corpus

model

Bigrams: a problem

JOHN READ MOBY DICK
MARY READ A DIFFERENT BOOK

SHE READ A BOOK BY CHER

p(CHER READ A BOOK)

= p(CHER|•) p(READ|CHER) p(A|READ) p(BOOK|A) p(•|BOOK)

= c(• CHER)P
w c(• w)

c(CHER READ)P
w c(CHER w)

c(READ A)P
w c(READ w)

c(A BOOK)P
w c(A w)

c(BOOK •)P
w c(BOOK w)

= 0
3

0
1

2
3

1
2

1
2

= 0

8

(Chen & Goodman 98)

Unseen data

• ML estimate is “optimal” only for the corpus from
which we computed it.

• Usually does not generalize directly to new data.
‣ Ok for unigrams, but there are so many bigrams.

• ML estimate predicts probability of 0 for n-grams
that were not observed in training. This is a disaster
because product with 0 is always 0.

Smoothing techniques

• Basic idea: Replace ML estimate 
 
 
 
by estimate with adjusted bigram count

• Redistribute counts from seen to unseen bigrams.

• Generalizes easily to n-gram models with n > 2.

PML(wi | wi�1) =
C(wi�1wi)

C(wi�1)

P ⇤(wi | wi�1) =
C⇤(wi�1wi)

C(wi�1)

Smoothing

0

1

2

3

4
th

e up

ch
ic

ke
ns hi

s

m
us

se
ls

w
ha

te
ve

r

ga
rb

ag
e

aff
ec

ts w
1

w
2

w
3

w
4

w
5

w
6

ML estimate: 
∑ P(...) = 1 

∑ P(...) = 0 

true 
prob dist

C(eat X) in Brown corpus

0

1

2

3

4

5
th

e up

ch
ic

ke
ns hi

s

m
us

se
ls

w
ha

te
ve

r

ga
rb

ag
e

aff
ec

ts w
1

w
2

w
3

w
4

w
5

w
6

Add-one Smoothing
Laplace

0

1

2

3

4

5
th

e up

ch
ic

ke
ns hi

s

m
us

se
ls

w
ha

te
ve

r

ga
rb

ag
e

aff
ec

ts w
1

w
2

w
3

w
4

w
5

w
6

Add-one Smoothing

∑ P(...) > 0 

Laplace

0

1

2

3

4

5
th

e up

ch
ic

ke
ns hi

s

m
us

se
ls

w
ha

te
ve

r

ga
rb

ag
e

aff
ec

ts w
1

w
2

w
3

w
4

w
5

w
6

Add-one Smoothing

∑ P(...) < 1 

∑ P(...) > 0 

Laplace

Add-one Smoothing

• Count every bigram (seen or unseen) one more
time than in corpus and normalize:

Plap(wi | wi�1) =
C(wi�1wi) + 1P
w(C(wi�1w) + 1)

=
C(wi�1wi) + 1

C(wi�1) + |V |
JOHN READ MOBY DICK

MARY READ A DIFFERENT BOOK
SHE READ A BOOK BY CHER

p(JOHN READ A BOOK)

= 1+1
11+3

1+1
11+1

1+2
11+3

1+1
11+2

1+1
11+2

⇡ 0.0001

p(CHER READ A BOOK)

= 1+0
11+3

1+0
11+1

1+2
11+3

1+1
11+2

1+1
11+2

⇡ 0.00003

10

|V| = 11, |seen bigram types| = 11  
⇒ 110 unseen bigrams

JOHN READ MOBY DICK
MARY READ A DIFFERENT BOOK

SHE READ A BOOK BY CHER

p(JOHN READ A BOOK)

= 1+1
11+3

1+1
11+1

1+2
11+3

1+1
11+2

1+1
11+2

⇡ 0.0001

p(CHER READ A BOOK)

= 1+0
11+3

1+0
11+1

1+2
11+3

1+1
11+2

1+1
11+2

⇡ 0.00003

10

Add-one Smoothing

• Easy to implement, but dramatically overestimates
probability of unseen events.
‣ In the Cher example: Plap(unseen | wi-1) ≥ 1/14;  

thus “count”(wi-1 unseen) ≈ 110 * 1/14 = 7.8.

‣ Compare against 12 bigram tokens in training corpus.

• Learn all about how to really do smoothing in the
course “Statistical NLP”.

Conclusion

• Statistical models of natural language.

• Language models with n-grams.

• The problem of data sparseness.

• Smoothing.

