n-gram models

Computational Linguistics

Alexander Koller

29 October 2019

Let’s play a game

e | will write a sentence on the board.

e Each of you, in turn, gives me a word to continue
that sentence, and I will write it down.

Let’s play another game

e You write a word on a piece of paper.

e You get to see the piece of paper of your neighbor,
but none of the earlier words.

e In the end, I will read the sentence you wrote.

Statistical models in NLP

o Generative statistical model of language:
pd P(w) over NL expressions that we can observe.

» w may be complete sentences or smaller units

» will later extend this to pd P(w, t) with hidden random
variables t

e Assumption: A corpus of observed sentences w is
generated by repeatedly sampling from P(w).

o We try to estimate the parameters of the prob dist
from the corpus, so we can make predictions about
unseen data.

Predictive text models

BOB DYLAN 2 BOB DYLAN NEWSLETTER SEARCH & LYRICS Q

TOUR NEWS ALBUMS SONGS BOOKS ART WHISKEY STORE ﬂ

Bob On Bob APpEARS ON

WRITTEN BY: BOB DYLAN, AMAZON REVIEWS OF BOB DYLAN

The album is another instant classic from a man

Who knows how to be wandering the road

I bought it for my darling but she said it was not for her
Now i know that dylan magic just cant go on blonde
She said his voice is simply horrible

It sounds like a south-bound train

It sounds like every sparrow is blowing through his face

Hey mama is it hopeless?

Blonde On Blonde
(Original Release)

Is no exception made?

Are dylan's millions of songs all written in vain?

http://objectdreams.tumblr.com/

Predictive text models

Aggressive Daniel is a male rabbit who gives in to peer
pressure. His trademark is horns. In 2007, Sanrio finally
gave him a mouth. His birthday is wrong.

https://www.theverge.com/2018/5/31/17405042/botnik-studios-predictive-writer-voicebox

Word-by-word random process

o A language model (LM) is a probability distribution
P(w) over sentences.

e Think of it as random process that generates
sentences word by word:

X1 Xz X3 X4

Word-by-word random process

o A language model (LM) is a probability distribution
P(w) over sentences.

e Think of it as random process that generates
sentences word by word:

X1 Xz X3 X4

l

copper

Word-by-word random process

o A language model (LM) is a probability distribution
P(w) over sentences.

e Think of it as random process that generates
sentences word by word:

X1 Xz X3 X4

l l

copper 1S

Word-by-word random process

o A language model (LM) is a probability distribution
P(w) over sentences.

e Think of it as random process that generates
sentences word by word:

X1 Xz X3 X4

l l l

copper 1S a

Word-by-word random process

o A language model (LM) is a probability distribution
P(w) over sentences.

e Think of it as random process that generates
sentences word by word:

X1 Xz X3 X4

l l l l

copper is a metal

Process from our game

Each of you = a random variable X
(€8)» o 0 .
event “X; = w¢ means word at position t is w.

When you chose wy, you could see the outcomes of
the previous variables: X; = wi, ..., X1 = We.1.

Thus, X; followed a pd

P(X:=w | X1 =wy,..., X1 = we_1)

Process from our game

e Assume that X; follows some given PD
P(X:=w: | X1 =wy,..., X1 =we1)
e Then probability of the entire corpus (or sentence)
W = W1 ... Wy iS joint probability

P(wlwn) — P(wl)-P(wg\wl)-P(wglwl,wg)
o Plwy, | we, .oy wp—1)

Process from our game

e Assume that X; follows some given PD
P(X:=w: | X1 =wy,..., X1 =we1)
e Then probability of the entire corpus (or sentence)
W = W1 ... Wy iS joint probability

P(wlwn) — P(wl)-P(wg\wl)-P(wglwl,wg)
o Plwy, | we, .oy wp—1)

/

How do we estimate these?

Statistical models

e We want to use prob theory to estimate a model of a
generating process from observations about its
outcomes.

e Simpler case: we flip a coin 100 times and observe
H 61 times. Should we believe that it is a fair coin?

» observation: absolute freq C(H) = 61, C(T) = 39;
thus relative freq f(H) = 0.61, £f(T) = 0.39

» model: assume rv X follows a Bernoulli distribution,

i.e. X has two outcomes, and there is a value p such that
PX=H)=pand PX=T)=1-p.

» want to estimate the parameter p of this model

Fit of model and observations

e How do we quantify how well a model fits with the
observations we made?

e Out of the many possibilities, easiest is to look at
the likelihood: probability P(O ; p) of the
observations O given the values p for the model
parameters.

o Maximum likelihood estimation: find parameter
values for which the likelihood of O is maximal.

likelihood L(O ; p)

Likelihood functions

likelihood L(O ; p) = p€H * (1-p)C(MD * binom(N, C(H))

0.4 | | | |
0.35 -

t=1 —
count C(H): t=3 —— -~
t=0 =——

—
w
|

0.25 N =10

O
N

0.15

I
—

0 0.2 0.4 0.6 0.8 1
parameter p

(Wikipedia page on MLE; licensed from Casp11 under CC BY-SA 3.0)

ML Estimation

e Goal: Find value for p that maximizes the likelihood
of the observations.

e For Bernoulli models, it is extremely easy to estimate
the parameters that maximize the likelihood:

» P(X'=a)=1{(a)

» in the coin example above, just take p = {(H)

e Can prove that relative frequency f is an ML estimator
for a lot of different statistical models (Bernoulli,
multinomial, etc.; see link on course page).

Parameters of the model

Our model has one parameter for
P(X¢=wt | wi, ..., we.q) for each tand wy, ..., wt.

Can use maximum likelihood estimation:

C(wy ... we_1wy)

Plw | wy, ..., we_q) = Clwy - wp)

Let’s say a natural language has 105 different words.
How many tuples wi, ... w; of length t?

y t=1:10°
» t=2:1010 different contexts

» t=3:1015 etc.

Sparse data problem

o Typical corpus sizes:

» Brown corpus: about 10¢ tokens

» Gigaword corpus: about 10° tokens

e Problem exacerbated by Zipf's Law:

» Order all words by their absolute frequency in corpus
(rank 1 = most frequent word).

» Then log(absolute frequency) falls linearly with log(rank);
i.e., most words are really rare.

» Zipf's Law is very robust across languages and corpora.

Independence assumptions

e Lets pretend that word at position t depends only
on the words at positions t-1, t-2, ..., t-k for some
fixed k (Markov assumption of degree k).

e Then we get an n-gram model, with n = k+1:
P(Xt ‘ Xl, .« o 7Xt—1) — P(Xt | Xt—lm « .. 7Xt—1)
for all t.

e Special names for unigram models (n = 1),
bigram models (n = 2), trigram models (n = 3).

» Thus our second game was a bigram model.

Independence assumptions

e We assume statistical independence of X; from
events that are too far in the past, although we
know that this assumption is incorrect.

e Typical tradeoft in statistical NLP:

» if model is too shallow, it won't represent important
linguistic dependencies

» if model is too complex, its parameters can't be estimated
accurately from the available data

low n high »

< >
modeling errors estimation errors

Bigrams: an example

JOHN READ MOBY DICK
MARY READ A DIFFERENT BOOK
SHE READ A BOOK BY CHER

p(JOHN READ A BOOK)

= p(JOHN|e) p(READ|JOHN) p(A|READ) p(BOOK|A) p(e|BOOK)

__ (e JOHN) ¢(JOHN READ) «(READ A) ¢(A BOOK) ¢(BOOK e)
Yowclew) > c(JOHN w) > c(READ w) > c(Aw) > c(BOOK w)

1 1 2 1 1
3 1 3 2 2

0.06

Q

(Chen & Goodman 98)

n-grams: Evaluation

Measure quality of n-gram model using perplexity
PP(w) = P(w1 ... wn)-IN of test data w = wy ... wn.

To get honest picture of model’s performance,
evaluate it on test data that was not used for training.

training corpus test corpus
model » evaluation

Maximum likelihood model for training corpus
is not necessarily good for test corpus (overfitting).

Bigrams: a problem

JOHN READ MOBY DICK
MARY READ A DIFFERENT BOOK
SHE READ A BOOK BY CHER

p(CHER READ A BOOK)

= p(CHER|e) p(READ|CHER) p(A|READ) p(BOOKI|A) p(e|BOOK)

_ c¢(e CHER) ¢(CHER READ) c¢(READ A) c(A BOOK) c(BOOK o)
- Y pclew) > c(CHERw) > ,c(READ w) >, c(Aw) %, c(BOOK w)

o) o) 2 1 1

3 1 3 2 2

(Chen & Goodman 98)

Unseen data

e ML estimate is “optimal” only for the corpus from
which we computed it.

e Usually does not generalize directly to new data.

» Ok for unigrams, but there are so many bigrams.

e ML estimate predicts probability of 0 for n-grams
that were not observed in training. This is a disaster
because product with 0 is always 0.

Smoothing techniques

e Basicidea: Replace ML estimate

C W; -1W;
PML(wi ‘ QUi—l) = é(wll))

by estimate with adjusted bigram count
C* (wi_ 1 wz)
C (wi_ 1)

P*(wz ‘ wi_l) =

e Redistribute counts from seen to unseen bigrams.

o Generalizes easily to n-gram models with n > 2.

Smoothing

3
> P(...)=0
2
1
true
prob dist

the

up
chickens
his
mussels
whatever
garbage
affects

C(eat X) in Brown corpus

oM
M

M

M

™

M
s}oope
o3eqied
I9AdBYM
sTossnuu
STY
SUOIYD

dn

elep]

>P(..)>0

oM
M

M

M

™

M
s}oope
o3eqied
I9AdBYM
sTossnuu
STY
SUOIYD

dn

elep]

(@)
=
i e
i
O
o
&
W
)
 am
Q
d
d
<

>P(..)>0

oM
M

M

M

™

M
syape
o3eqied
I9AdBYM
sTossnuu
STY
SUOIYD

dn

elopl

Add-one Smoothing

e Count every bigram (seen or unseen) one more
time than in corpus and normalize:

Clwi—iw;) +1 C(wi—1w;) + 1
w(C(wisiw) +1) C(wi—1) + |V

Plap(wi | wi1) = >

p(JOHN READ A BOOK)
JOHN READ MOBY DICK
MARY READ A DIFFERENT BOOK 141 1+1 1+2 141 1+1
SHE READ A BOOK BY CHER — 1143 11+1 1143 11+2 1142
~ 0.0001

p(CHER READ A BOOK)
|V| = 11, |seen bigram types| = 11

) — 140 140 142 141 141
= 110 unseen bigrams 1143 1141 1143 1142 1142

~ 0.00003

Add-one Smoothing

e Easy to implement, but dramatically overestimates
probability of unseen events.

» In the Cher example: Pjp(unseen | wi.1) > 1/14;
thus “count”(wi.; unseen) = 110 * 1/14 = 7.8.

» Compare against 12 bigram tokens in training corpus.

e Learn all about how to really do smoothing in the
course “Statistical NLP™.

Conclusion

Statistical models of natural language.
Language models with n-grams.
The problem of data sparseness.

Smoothing.

