
Computational Linguistics

Assignment 1 (2019-10-25)

Winter Semester 2019/20 – Prof. Dr. Alexander Koller

This assignment assumes that you are using Python, and that you have
installed and familiarized yourself with the NLTK 3 library. For full credit,
do Problem 1 and one of Problem 2 and Problem 3. Feel free to do all three,
or to extend one of the problems, for extra credit.

1 Zipf’s Law

Empirically verify Zipf’s law. Use the following freely available corpora:

• King James Bible (in Piazza)
• The Jungle Book (in Piazza)
• SETIMES Turkish-Bulgarian parallel newspaper text

http://opus.lingfil.uu.se/download.php?f=SETIMES2/bg-tr.txt.zip

For each corpus, compute a list of unique words sorted by descending fre-
quency. Feel free to tokenize however you like, e.g. by splitting at whitespace.
Use the Python library matplotlib to plot the frequency curves for the cor-
pora, i.e. x-axis is position in the frequency list, y-axis is frequency. Make
sure to provide both a plot with linear axes and one with log-log axes (see
methods matplotlib.pyplot.plot and matplotlib.pyplot.loglog) for
each corpus.

Provide a brief discussion of the findings, as well as the source code.

2 Random Text Generation

In this assignment, you will reimplement the “Dissociated Press” system
that was developed by MIT students in the 1970s (see Wikipedia). The
purpose of this system is to generate random text from an n-gram model
over a corpus.

Train an instance of the n-gram class from Piazza using a corpus of your
choice (from Problem 1 or elsewhere), and name it ngram. You can then



use ngram[context] to determine the probability distribution for the next
word given the previous n − 1 words. Given this distribution, you can use
the method generate from the NLTK class ProbDistI to generate the next
random word.

Use your system to produce a number of text samples, 100 words in length
per each. Vary n from 2 to 4. Submit a few interesting texts that your system
generates, and discuss how the quality (and creativity) of the generated
outputs changes with n. Also submit your source code, and document any
dependencies, such as links to the selected corpora.

3 Statistical Dependence

In statistical NLP we frequently make independence assumptions about re-
levant events which are not actually correct in reality. We are asking you to
test the independence assumptions of unigram language models.

Pointwise mutual information,

pmi(w1, w2) = log
P (Xt = w1, Xt+1 = w2)

P (Xt = w1) · P (Xt+1 = w2)
≈ log

C(w1w2) ·N
C(w1) · C(w2)

,

is a measure of statistical dependence of the events Xt = w1 and Xt+1 =
w2; C(w) is the absolute frequency and N is the size of the corpus. If the
probability of the next word in the corpus being w2 is unaffected by the
probability of the previous word being w1, then pmi(w1, w2) = 0; otherwise
the pmi is positive or negative.

Calculate the pmi for all successive pairs (w1, w2) of words in a corpus of
your choice. Words (not word pairs!) that occur in the corpus less than 10
times should be ignored. List the 20 word pairs with the highest pmi value
and the 20 word pairs with the lowest pmi value.

Document and submit your observations and code. Discuss the validity of
the independence assumption for unigram models.

Turn in before class on 2019-11-05 on Piazza.


