
Probabilistic  
Context-free Grammars

Computational Linguistics 

Alexander Koller

22 November 2019

The CKY Recognizer
S → NP VP 
NP → Det N 
VP → V NP

V → ate 
NP → John

Det → a 
N → sandwich

NP

V

Det

NNPVPS

John

ate

a

sandwich

…
 sa

nd
w

ic
h

…
 a

…
 at

e

…
 Jo

hn Cell at column i, row k: 
{ A | A ⇒* wi … wk-1 }k

=
2

3
4

5

i = 1 2 3 4

Chart

S ⇒* w

CKY recognizer: pseudocode
Data structure: Ch(i,k) eventually contains {A | A ⇒* wi ... wk-1} 
(initially all empty). 
 
for each i from 1 to n: 
 for each production rule A → wi: 
 add A to Ch(i, i+1) 

for each width b from 2 to n: 
 for each start position i from 1 to n-b+1:  
 for each left width k from 1 to b-1: 
 for each B ∈ Ch(i, i+k) and C ∈ Ch(i+k,i+b): 
 for each production rule A → B C: 
 add A to Ch(i,i+b)

claim that w ∈ L(G) iff S ∈ Ch(1,n+1)

Recognizer to Parser
S → NP VP 
NP → Det N 
VP → V NP

V → ate 
NP → John

Det → a 
N → sandwich

NP

V

Det

NNPVPS

John

ate

a

sandwich

…
 sa

nd
w

ic
h

…
 a

…
 at

e

…
 Jo

hn Cell at column i, row k: 
{ A | A ⇒* wi … wk-1 }k

=
2

3
4

5

i = 1 2 3 4

Recognizer to Parser

• Parser: need to construct parse trees from chart.

• Do this by memorizing how each A ∈ Ch(i,k) can 
be constructed from smaller parts.
‣ built from B ∈ Ch(i,j) and C ∈ Ch(j,k) using A → B C: 

store (B,C,j) in backpointer for A in Ch(i,k).

‣ analogous to backpointers in HMMs

• Once chart has been filled, enumerate trees
recursively by following backpointers,  
starting at S ∈ Ch(1,n+1).

Let’s play a game

• Given a nonterminal symbol, expand it.

• You can take one of two moves:
‣ expand nonterminal into a sequence of other nontermianls

‣ use nonterminals S, NP, VP, PP, … or POS tags

‣ expand nonterminal into a word

Penn Treebank POS tags

Some real trees

Penn Treebank, #0001

Penn Treebank, #0002

nltk.corpus.treebank.parsed_sents("wsj_0001.mrg")[0].draw()

Ambiguity
Need to disambiguate: find “correct” parse tree for ambiguous sentence.

S

NP VP

VP

I

V NP

anshot

PP

P

in

Det N

elephant

NP

my

PRP$ N

pyjamas

S

NP VP

I

V
NP

anshot

PP

P

in

Det

N

elephant

NP

my

PRP$ N

pyjamas

N

How do we identify the “correct” tree?
How do we compute it efficiently? (Remember: exponential number of readings.)

Probabilistic CFGs

• A probabilistic context-free grammar (PCFG) 
is a context-free grammar in which
‣ each production rule A → w has a probability P(A → w | A): 

when we expand A, how likely is it that we choose A → w?

‣ for each nonterminal A, probabilities must sum to one: 

‣ we will write P(A → w) instead of P(A → w | A) for short

X

w

P (A ! w | A) = 1

An example

S → NP VP [1.0] VP → V NP [0.5]

NP → Det N [0.8] VP → VP PP [0.5]
NP → i [0.2] V → shot [1.0]

N → N PP [0.4] PP → P NP [1.0]
N → elephant [0.3] P → in [1.0]

N → pyjamas [0.3] Det → an [0.5]
Det → my [0.5]

(let’s pretend for simplicity that Det = PRP$)

Generative process

• PCFG generates random derivations of CFG.
‣ each event (expand nonterminal by production rule) 

statistically independent of all the others

S⇒ NP VP ⇒ i VP ⇒ i VP PP
⇒* i shot an elephant in my pyjamas

1.0 0.2 0.5

0.00072

S⇒ NP VP ⇒ i VP ⇒* i V Det N
⇒* i shot … pyjamas

1.0 0.2 0.4

0.4
⇒ i V Det N PP

0.00057

Parse trees

S

NP VP

I

V
NP

anshot

PP

P

in

Det

N

elephant

NP

my

Det N

pyjamas

N

S

NP VP

VP

I

V NP

anshot

PP

P

in

Det N

elephant

NP

my

Det N

pyjamas

P(t1) = 0.00072 P(t2) = 0.00057

“correct” = more probable parse tree

0.2 0.5

0.5

0.8

0.5 0.3

0.8

0.5 0.3

0.2 0.5

0.8

0.5

0.8

0.5 0.3

0.4

0.3

Language modeling

• As with other generative models (e.g. HMMs), can
define probability P(w) of string by marginalizing
over its possible parses: 

• Can compute this efficiently with  
inside probabilities, see next time.

P (w) =
X

t2parses(w)

P (t)

Disambiguation

• Assumption: “correct” parse tree = the parse tree
that had highest prob of being generated by random
process, i.e.  

• We use a variant of the Viterbi algorithm to
compute it.

• Here, Viterbi based on CKY; can do it with other
parsing algorithms too.

argmax
t2parses(w)

P (t)

The intuition

VP NP N PP

VP NP N

Det

V

shot

an

elephant

in my pyjamas

…
 el

ep
ha

nt

…
 a

n

…
 sh

ot

…
 in

 m
y

py
ja

m
as

Ordinary CKY parse chart: Ch(i,k) = {A | A ⇒* wi … wk-1}

The intuition

VP: 0.0036 NP: 0.006 N: 0.014 PP: 0.12

VP: 0.06 NP: 0.12 N: 0.3

Det: 0.5

V: 1.0

shot

an

elephant

in my pyjamas

…
 el

ep
ha

nt

…
 a

n

…
 sh

ot

…
 in

 m
y

py
ja

m
as

Viterbi CKY parse chart: Ch(i, k) = {(A, p) | p = max
d:A)⇤wi...wk�1

P (d)}

Viterbi CKY

• Define for each span (i,k) and each nonterminal A
the probability

• Compute V iteratively “bottom up”, i.e. starting from
small spans and working our way up to longer spans.

V (A, i, k) = max
A

d
)⇤wi...wk�1

P (d)

V (A, i, i+ 1) = P (A ! wi)

V (A, i, k) = max
A!B C
i<j<k

P (A � B C) · V (B, i, j) · V (C, j, k)

Viterbi CKY - pseudocode

set all V[A,i,j] to 0

for all i from 1 to n:  
 for all A with rule A -> wi:  
 add A to Ch(i,i+1)  
 V[A,i,i+1] = P(A -> wi)

for all b from 2 to n:  
 for all i from 1 to n-b+1:  
 for all k from 1 to b-1:  
 for all B in Ch(i,i+k) and C in Ch(i+k,i+b):  
 for all production rules A -> B C:  
 add A to Ch(i,i+b)  
 if P(A -> B C) * V[B,i,i+k] * V[C,i+k,i+b] > V[A,i,i+b]:  
 V[A,i,i+b] = P(A -> B C) * V[B,i,i+k] * V[C,i+k,i+b]

Viterbi-CKY in action

shot

an

elephant

in my pyjamas

…
 el

ep
ha

nt

…
 a

n

…
 sh

ot

…
 in

 m
y

py
ja

m
as

Viterbi CKY parse chart: Ch(i, k) = {(A, p) | p = max
d:A)⇤wi...wk�1

P (d)}

V: 1.0

Det: 0.5

N: 0.3

PP: 0.12

VP: 0.06 NP: 0.12

N: 0.014NP: 0.0058
VP: 0.0036
VP: 0.0029

Remarks

• Viterbi CKY has exactly the same nested loops  
as the ordinary CKY parser.
‣ computing V in addition to Ch only changes constant factor

‣ thus asymptotic runtime remains O(n3)

• Compute optimal parse by storing backpointers.
‣ same backpointers as in ordinary CKY

‣ sufficient to store the best backpointer for each (A,i,k) 
if we only care about best parse (and not all parses), 
i.e. actually uses less memory than ordinary CKY

Obtaining the PCFG

• How to obtain the CFG?
‣ write by hand

‣ derive from treebank

‣ grammar induction from raw text

• How to obtain the rule probabilities once we have
the CFG?
‣ maximum likelihood estimation from treebank

‣ EM training from raw text (inside-outside algorithm)

The Penn Treebank

• Large (in the mid-90s) quantity of text,  
annotated with POS tags and syntactic structures.

• Consists of several sub-corpora:
‣ Wall Street Journal: 1 year of news text, 1 million words

‣ Brown corpus: balanced corpus, 1 million words

‣ ATIS: dialogues on flight bookings, 5000 words

‣ Switchboard: spoken dialogue, 3 million words

• WSJ PTB is standard corpus for training and
evaluating PCFG parsers.

Marcus

Annotation format

That cold , empty sky was full of fire and light .

DT JJ , JJ NN VBZ JJ IN NN CC NN .

NP-SBJ NP

PP

ADJP-PRD

VP

S

((S  
 (NP-SBJ (DT That)  
 (JJ cold) (, ,)  
 (JJ empty) (NN sky))  
 (VP (VBD was)  
 (ADJP-PRD (JJ full)  
 (PP (IN of)  
 (NP (NN fire)  
 (CC and)  
 (NN light)))))
 (. .)))

Reading off grammar

• Can directly read off “grammar in annotators’
heads” from trees in treebank.

• Yields very large CFG, e.g. 4500 rules for VP: 
VP → VBD PP 
VP → VBD PP PP 
VP → VBD PP PP PP 
VP → VBD PP PP PP PP 
VP → VBD ADVP PP 
VP → VBD PP ADVP 
… 
VP → VBD PP PP PP PP PP ADVP PP

“This mostly happens because we go  
from football in the fall to lifting in the winter 

to football again in the spring.”

Evaluation

• Step 1: Decide on training and test corpus. 
For WSJ corpus, there is a conventional split by sections:

2-21 23

TestTraining

22

Devel

Evaluation

• Step 2: How should we measure the accuracy of the
parser?

• Straightforward idea: Measure “exact match”, i.e.
proportion of gold standard trees that parser got right.

• This is too strict:
‣ parser makes many decisions in parsing a sentence

‣ a single incorrect parsing decision makes tree “wrong”

‣ want more fine-grained measure

Comparing parse trees

• Idea 2 (PARSEVAL): Compare structure of parse
tree and gold standard tree.
‣ Labeled: Which constituents (span + syntactic category) of

one tree also occur in the other?

‣ Unlabeled: How do the trees bracket the substrings of the
sentence (ignoring syntactic categories)?

But the concept is workable

CC DT NN VBZ JJ

NP-SBJ ADJP

VP
S

But the concept is workable

IN DT NN VBZ JJ

NP ADJP

VP
S

PP
NP-SBJ

Gold Parse

Precision
What proportion of constituents in parse tree is also present in gold tree?

But the concept is workable

CC DT NN VBZ JJ

NP-SBJ ADJP

VP
S

But the concept is workable

IN DT NN VBZ JJ

NP ADJP

VP
S

PP
NP-SBJ

Gold Parse✓

✓

✓

✓✓✓✓

❌

(✓)

(✓) (✓)

Labeled Precision = 7 / 11 = 63.6%  
Unlabeled Precision = 10 / 11 = 90.9%

Recall
What proportion of constituents in gold tree is also present in parse tree?

But the concept is workable

CC DT NN VBZ JJ

NP-SBJ ADJP

VP
S

But the concept is workable

IN DT NN VBZ JJ

NP ADJP

VP
S

PP
NP-SBJ

Gold Parse✓

(✓)

Labeled Recall = 7 / 9 = 77.8%  
Unlabeled Recall = 8 / 9 = 88.9%

✓

✓

✓✓✓✓

❌

F-Score

• Precision and recall measure opposing qualities of  
a parser (“soundness” and “completeness”)

• Summarize both together in the f-score: 

• In the example, we have labeled f-score 70.0  
and unlabeled f-score 89.9.

F1 =
2 · P ·R
P +R

Summary

• PCFGs extend CFGs with rule probabilities.
‣ Events of random process are nonterminal expansion  

steps. These are all statistically independent.

‣ Use Viterbi CKY parser to find most probable parse tree for
a sentence in cubic time.

• Read grammars off treebanks.
‣ next time: learn rule probabilities

• Evaluation of statistical parsers.

