
Semantic parsing

Computational Linguistics 

Alexander Koller

25 January 2019

Computing with meanings

• Ancient problem: inference.
‣ How can we tell whether a sentence follows from others?

‣ Can we compute this automatically?

All men are mortal.
Socrates is a man.

Therefore, Socrates is mortal.

Aristotle

Formal meaning representations

All men are mortal.
Socrates is a man.

Therefore, Socrates is mortal.

• Aristotle with more modern tools (ca. 2000):
‣ Compute meaning representation in some formal 

language (e.g. predicate logic)

‣ so that it captures something relevant about the sentence’s
meaning (e.g. its truth conditions)

‣ and then use reasoning tools for the formal language  
(e.g. a theorem prover for predicate logic)

∀x. man(x) → mortal(x)
man(s)

mortal(s)

Frege

Compositional semantics

MontagueS → NP VP 
VP → V NP 
NP → Det N 
NP → John
V → eats 
Det → a 
N → sandwich

⟨S⟩ = ⟨NP⟩(⟨VP⟩) 
⟨VP⟩ = λy ⟨NP⟩(⟨V⟩(y)) 
⟨NP⟩ = ⟨Det⟩(⟨N⟩) 
⟨NP⟩ = λP P(j*) 
⟨V⟩ = eat’  
⟨Det⟩ = λPλQ∃x P(x) ∧ Q(x) 
⟨N⟩ = sw’

when you apply this  
syntax rule …

… construct λ-term for parent 
from λ-terms for children like this

Example

S

VP

NP

N

sandwich

Det

a

V

eats

NP

John

S

VP

NP

N

Käsebrot

Det

ein

V

isst

NP

Hans

S

VP

PP

NP

N

pyjamas

PRP$

my

P

in

VP

NP

N

elephant

Det

an

IV

shot

NP

I

1

sw’

λPλQ∃x P(x) ∧ Q(x)

(λPλQ∃x P(x) ∧ Q(x))(sw’) 
→β λQ∃x sw’(x) ∧ Q(x)

eat’

λy (λQ∃x sw’(x) ∧ Q(x))(eat’(y))  
→β λy ∃x sw’(x) ∧eat’(y)(x)

λP P(j*)

(λP P(j*)) (λy ∃x sw’(x) ∧eat’(y)(x))  
→β (λy ∃x sw’(x) ∧eat’(y)(x))(j*) 
→β ∃x sw’(x) ∧eat’(j*)(x)

Semantic parsing

• Open issue in classical semantics construction: 
Where do we get large grammar that supports it?

• Current trend in CL is semantic parsing:  
learn mapping from sentence to formal meaning
representation using statistical methods.

• E.g. from Geoquery corpus (880 sentences):

What is the smallest state by area?  
answer(x1, smallest(x2, state(x1), area(x1, x2)))

With synchronous grammars

• Use a synchronous grammar (≈ SCFG) to
simultaneously generate strings and λ-expressions.

Q → what is the F  
F → smallest F F 
F → state 
F → by area

Q → answer(x1, F(x1)) 
F → λx1 smallest(x2, F(x1), F(x1, x2)) 
F → λx1 state(x1) 
F → λx1 λx2 area(x1, x2)

Q

(x1))F

(x1, x2))F

�x1�x2area(x1, x2)

(x1),F

�x1state(x1)

�x1.smallest(x2,

answer(x1,

Q

F

F

areaby

F

state

smallest

theiswhat

S

VP

NP

N

sandwich

Det

a

V

eats

NP

John

S

VP

NP

N

Käsebrot

Det

ein

V

isst

NP

Hans

1

Q

(x1))F

(x1, x2))F

�x1�x2area(x1, x2)

(x1),F

�x1state(x1)

�x1.smallest(x2,

answer(x1,

Q

F

F

areaby

F

state

smallest

theiswhat

S

VP

NP

N

sandwich

Det

a

V

eats

NP

John

S

VP

NP

N

Käsebrot

Det

ein

V

isst

NP

Hans

1

Wong & Mooney

what is the smallest state by area

Q

)F

)F

area(x1, x2)

F

state(x1)

smallest(x2,

answer(x1,

Q

(x1))F

(x1, x2))F

�x1�x2area(x1, x2)

(x1),F

�x1state(x1)

�x1.smallest(x2,

answer(x1,

Q

F

F

areaby

F

state

smallest

theiswhat

S

VP

NP

N

sandwich

Det

a

V

eats

NP

John

1

Assumptions: 
- alignments between words and nodes 
- unambiguous structure of meaning representation

Mooney

Wong & Mooney

what is the smallest state by area

Q

)F

)F

area(x1, x2)

F

state(x1)

smallest(x2,

answer(x1,

Q

(x1))F

(x1, x2))F

�x1�x2area(x1, x2)

(x1),F

�x1state(x1)

�x1.smallest(x2,

answer(x1,

Q

F

F

areaby

F

state

smallest

theiswhat

S

VP

NP

N

sandwich

Det

a

V

eats

NP

John

1

“word” alignments

Assumptions: 
- alignments between words and nodes 
- unambiguous structure of meaning representation

Mooney

Wong & Mooney

what is the smallest state by area

Q

)F

)F

area(x1, x2)

F

state(x1)

smallest(x2,

answer(x1,

Q

(x1))F

(x1, x2))F

�x1�x2area(x1, x2)

(x1),F

�x1state(x1)

�x1.smallest(x2,

answer(x1,

Q

F

F

areaby

F

state

smallest

theiswhat

S

VP

NP

N

sandwich

Det

a

V

eats

NP

John

1

“word” alignments

Assumptions: 
- alignments between words and nodes 
- unambiguous structure of meaning representation

Mooney

Wong & Mooney

what is the smallest state by area

Q

)F

)F

area(x1, x2)

F

state(x1)

smallest(x2,

answer(x1,

Q

(x1))F

(x1, x2))F

�x1�x2area(x1, x2)

(x1),F

�x1state(x1)

�x1.smallest(x2,

answer(x1,

Q

F

F

areaby

F

state

smallest

theiswhat

S

VP

NP

N

sandwich

Det

a

V

eats

NP

John

1

“word” alignments

Assumptions: 
- alignments between words and nodes 
- unambiguous structure of meaning representation

Mooney

Wong & Mooney

what is the smallest state by area

Q

)F

)F

area(x1, x2)

F

state(x1)

smallest(x2,

answer(x1,

Q

(x1))F

(x1, x2))F

�x1�x2area(x1, x2)

(x1),F

�x1state(x1)

�x1.smallest(x2,

answer(x1,

Q

F

F

areaby

F

state

smallest

theiswhat

S

VP

NP

N

sandwich

Det

a

V

eats

NP

John

1

“word” alignments

Assumptions: 
- alignments between words and nodes 
- unambiguous structure of meaning representation

Mooney

Wong & Mooney

what is the smallest state by area

Q

)F

)F

area(x1, x2)

F

state(x1)

smallest(x2,

answer(x1,

Q

(x1))F

(x1, x2))F

�x1�x2area(x1, x2)

(x1),F

�x1state(x1)

�x1.smallest(x2,

answer(x1,

Q

F

F

areaby

F

state

smallest

theiswhat

S

VP

NP

N

sandwich

Det

a

V

eats

NP

John

1

“word” alignments

Assumptions: 
- alignments between words and nodes 
- unambiguous structure of meaning representation

Mooney

Wong & Mooney

what is the smallest state by area

Q

)F

)F

area(x1, x2)

F

state(x1)

smallest(x2,

answer(x1,

Q

(x1))F

(x1, x2))F

�x1�x2area(x1, x2)

(x1),F

�x1state(x1)

�x1.smallest(x2,

answer(x1,

Q

F

F

areaby

F

state

smallest

theiswhat

S

VP

NP

N

sandwich

Det

a

V

eats

NP

John

1

“word” alignments

Assumptions: 
- alignments between words and nodes 
- unambiguous structure of meaning representation

Mooney

Where do unaligned words belong?

Q → what is the F | F → smallest F 
Q → what F | F → is the smallest F

Combinatory categorial grammar

sandwich
NP

NP

NNP/N(S\NP)/NP
John eats a

S\NP
S

big
N/N

N
>
>
>
<

Semantics in CCG

a sandwich
NP: h*

NP: sw’

(S\NP)/NP: eat’

John
eats

X: a

Y/(Y\X): λP.P(a)
>T

X: a

Y\(Y/X): λP.P(a)
<T

X/Y: f

X/Z: λx.f(g(x))
>B

Y/Z: g

Y\Z: g

X\Z: λx.f(g(x)) <B
X\Y: f

X/Y: f

X\Z: λx.f(g(x))
>Bx

Y\Z: g

Y/Z: g

X/Z: λx.f(g(x)) <Bx
X\Y: f

S/(S\NP): λP.P(h*)
>T

S/NP: λx.(λP.P(h*))(eat’(x)) ⇒β λx.eat’(x)(h*)
>B

S: (λx.eat’(x)(h*))(sw’) ⇒β eat’(sw’)(h*)
>

Zettlemoyer & Collins

Rules Categories produced from logical form
Input Trigger Output Category arg max(�x.state(x) ^ borders(x, texas), �x.size(x))

constant c NP : c NP : texas

arity one predicate p1 N : �x.p1(x) N : �x.state(x)

arity one predicate p1 S\NP : �x.p1(x) S\NP : �x.state(x)

arity two predicate p2 (S\NP)/NP : �x.�y.p2(y, x) (S\NP)/NP : �x.�y.borders(y, x)

arity two predicate p2 (S\NP)/NP : �x.�y.p2(x, y) (S\NP)/NP : �x.�y.borders(x, y)

arity one predicate p1 N/N : �g.�x.p1(x) ^ g(x) N/N : �g.�x.state(x) ^ g(x)

literal with arity two predicate p2
and constant second argument c N/N : �g.�x.p2(x, c) ^ g(x) N/N : �g.�x.borders(x, texas) ^ g(x)

arity two predicate p2 (N\N)/NP : �x.�g.�y.p2(x, y) ^ g(x) (N\N)/NP : �g.�x.�y.borders(x, y) ^ g(x)

an arg max / min with second
argument arity one function f

NP/N : �g. arg max / min(g, �x.f(x)) NP/N : �g. arg max(g, �x.size(x))

an arity one
numeric-ranged function f

S/NP : �x.f(x) S/NP : �x.size(x)

Figure 3: The rules that define GENLEX. We use the term predicate to refer to a function that returns a truth value; function to refer
to all other functions; and constant to refer to constants of type e. Each row represents a rule. The first column lists the triggers that
identify some sub-structure within a logical form L, and then generate a category. The second column lists the category that is created.
The third column lists example categories that are created when the rule is applied to the logical form at the top of this column.

as triggers for creating a category N : �x.p(x). Given the
logical form �x.major(x) ^ city(x), which has the arity-
one predicates major and city, this rule would create the
categories N : �x.major(x) and N : �x.city(x).

Intuitively, each of the rules in Figure 3 corresponds to a
different linguistic sub-category such as noun, transitive
verb, adjective, and so on. For example, the rule in the first
row generates categories that are noun phrases, and the sec-
ond rule generates nouns. The end result is an efficient way
to generate a large set of linguistically plausible categories
C(L) that could be used to construct a logical form L.

3.2 The Learning Algorithm

Figure 4 shows the learning algorithm used within our ap-
proach. The output of the algorithm is a PCCG, defined by
a lexicon ⇤ and a parameter vector ¯✓. As input, the algo-
rithm takes a training set of sentences paired with logical
forms, together with an initial lexicon, ⇤

0

.

At all stages, the algorithm maintains a parameter vector
¯✓ which stores a real value associated with every possible
lexical item. The set of possible lexical items is

⇤

⇤
= ⇤

0

[
n[

i=1

GENLEX(S
i

, L
i

)

In our experiments, the parameters were initialized to be
0.1 for all lexical items in ⇤

0

, and 0.01 for all other lexical
items. These values were chosen through experiments on
the development data; they give a small initial bias towards
using lexical items from ⇤

0

and favor parses that include
more lexical items.

The goal of the algorithm is to provide a relatively com-
pact lexicon, which is a small subset of the entire set of
possible lexical items. The algorithm achieves this by al-
ternating between two steps. The goal of step 1 is to search
for a relatively small number of lexical entries, which are
nevertheless sufficient to successfully parse all training ex-

amples. Step 2 is then used to re-estimate the parameters
of the lexical items that are selected in step 1.

In the t’th application of step 1, each sentence in turn
is parsed with the current parameters ¯✓t�1 and a spe-
cial, sentence–specific lexicon which is defined as ⇤

0

[
GENLEX(S

i

, L
i

). This will result in one or more highest-
scoring parses that have the logical form L

i

.6 Lexical
items are extracted from these highest-scoring parses alone.
The result of this stage is to generate a small subset �

i

of GENLEX(S
i

, L
i

) for each training example. The out-
put of step 1, at iteration t, is a subset of ⇤

⇤, defined as
⇤

t

= ⇤

0

[
S

n

i=1

�
i

.

Step 2 re-estimates the parameters of the members of ⇤

t

,
using stochastic gradient descent. The starting point for
gradient descent when estimating ¯✓t is ¯✓t�1, i.e., the pa-
rameter values at the previous iteration. For any lexical
item that is not a member of ⇤

t

, the associated parameter
in ¯✓t is set to be the same as the corresponding parameter in
¯✓t�1 (i.e., parameter values are simply copied across from
the previous iteration).

The motivation for cycling between steps 1 and 2 is as fol-
lows. In step 1, keeping only those lexical items that occur
in the highest scoring parse(s) leading to L

i

results in a
compact lexicon. This step is also guaranteed to produce
a lexicon ⇤

t

⇢ ⇤

⇤ such that the accuracy on the training
data when running the PCCG (⇤

t

, ¯✓t�1

) is at least as ac-
curate as applying the PCCG (⇤

⇤, ¯✓t�1

). In other words,
pruning the lexicon in this way cannot hurt parsing perfor-
mance on training data in comparison to using all possible
lexical entries.7

6Note that this set of highest-scoring parses is identical to the
set produced by parsing with ⇤

⇤, rather than the sentence-specific
lexicon. This is because ⇤0 [GENLEX(Si, Li) contains all lex-
ical items that can possibly be used to derive Li.

7To see this, note that restricting the lexicon in this way cannot
exclude any of the highest-scoring parses for Si that lead to Li. In
practice, it may exclude some parses that lead to logical forms for
Si that are incorrect. Because the highest-scoring correct parses

GENLEX: build candidates for lexicon entries

Log-linear probability models

• Define probability of parse tree in terms of features: 
 
 
 
where θ ∙ f(t,w) = θ1 ∙ f1(t,w) + … + θn ∙ fn(t,w)

• Features f(t,w) can capture arbitrary properties of  
t and w.
‣ Here: Each feature counts uses of one grammar rule.

• Train weight vector θ from data.

P (t | w) = e✓·f(t,w)

P
t0 e

✓·f(t0,w)

Zettlemoyer & Collins
overall learning algorithm

Step 2 also has a guarantee, in that the log-likelihood on the
training data will improve (assuming that stochastic gradi-
ent descent is successful in improving its objective). Step 2
is needed because after each application of step 1, the pa-
rameters ¯✓t�1 are optimized for ⇤

t�1

rather than ⇤

t

, the
current lexicon. Step 2 derives new parameter values ¯✓

t

which are optimized for ⇤
t

.

In summary, steps 1 and 2 together form a greedy, itera-
tive method for simultaneously finding a compact lexicon
and also optimizing the log-likelihood of the model on the
training data.

4 Related Work

This section discusses related work on natural language in-
terfaces to databases (NLIDBs), in particular focusing on
learning approaches, and related work on learning CCGs.

There has been a significant amount of work on hand engi-
neering NLIDBs. Androutsopoulos, Ritchie, and Thanisch
(1995) provide a comprehensive summary of this work.
Recent work in this area has focused on improved pars-
ing techniques and designing grammars that can be ported
easily to new domains (Popescu, Armanasu, Etzioni, Ko, &
Yates, 2004).

Zelle and Mooney (1996) developed one of the earliest ex-
amples of a learning system for NLIDBs. This work made
use of a deterministic shift–reduce parser and developed
a learning algorithm, called CHILL, based on techniques
from Inductive Logic Programming, to learn control rules
for parsing. The major limitation of this approach is that
it does not learn the lexicon, instead assuming that a lex-
icon that pairs words with their semantic content (but not
syntax) has been created in advance. Later, Thompson and
Mooney (2002) developed a system that learns a lexicon
for CHILL that performed almost as well as the original
system. Most recently, Tang and Mooney (2001) devel-
oped a statistical shift–reduce parser that significantly out-
performed these original systems. However, this system,
again, does not learn a lexicon.

A number of previous learning methods (Papineni, Roukos,
& Ward, 1997; Ramaswamy & Kleindienst, 2000; Miller,
Stallard, Bobrow, & Schwartz, 1996; He & Young, 2004)
have been applied to the ATIS domain, which involves a
natural language interface to a travel database of flight in-
formation. In the future we plan to test our method on this
domain. Miller et al. (1996) describe an approach that as-
sumes full annotation of parse trees. Papineni et al. (1997)
and Ramaswamy and Kleindienst (2000) use approaches
based on methods originally developed for machine trans-
lation. He and Young (2004) describe an approach using an
extension of hidden Markov models, resulting in a model
with some of the power of context-free models.

are still allowed, parsing performance cannot deteriorate.

Inputs:
• Training examples E = {(Si, Li) : i = 1 . . . n} where
each Si is a sentence, each Li is a logical form.
• An initial lexicon ⇤0

Procedures:
• PARSE(S, L, ⇤,

¯

✓): takes as input a sentence S, a logical
form L, a lexicon ⇤, and a parameter vector ¯

✓. Returns the
highest probability parse for S with logical form L, when S

is parsed by a PCCG with lexicon ⇤ and parameters ¯

✓. If
there is more than one parse with the same highest proba-
bility, the entire set of highest probability parses is returned.
Dynamic programming methods are used when implement-
ing PARSE, see section 2.4 of this paper.
• ESTIMATE(⇤, E,

¯

✓): takes as input a lexicon ⇤, a train-
ing set E, and a parameter vector ¯

✓. Returns parameter val-
ues ¯

✓ that are the output of stochastic gradient descent on the
training set E under the grammar defined by ⇤. The input ¯✓
is the initial setting for the parameters in the stochastic gra-
dient descent algorithm. Dynamic programming methods
are used when implementing ESTIMATE, see section 2.4.
• GENLEX(S, L): takes as input a sentence S and a logical
form L. Returns a set of lexical items. See section 3.1 for a
description of GENLEX.

Initialization: Define ¯

✓ to be a real-valued vector of arity |⇤⇤|,
where ⇤

⇤
= ⇤0 [

Sn
i=1 GENLEX(Si, Li). ¯

✓ stores a pa-
rameter value for each potential lexical item. The initial pa-
rameters ¯

✓

0 are taken to be 0.1 for any member of ⇤0, and
0.01 for all other lexical items.

Algorithm:
• For t = 1 . . . T

Step 1: (Lexical generation)
• For i = 1 . . . n:
– Set � = ⇤0 [GENLEX(Si, Li).
– Calculate ⇡ = PARSE(Si, Li, �,

¯

✓

t�1
).

– Define �i to be the set of lexical entries in ⇡.
• Set ⇤t = ⇤0 [

Sn
i=1 �i

Step 2: (Parameter Estimation)
• Set ¯

✓

t
= ESTIMATE(⇤t, E,

¯

✓

t�1
)

Output: Lexicon ⇤T together with parameters ¯

✓

T .

Figure 4: The overall learning algorithm.

There have been several pieces of previous work on learn-
ing CCGs. Clark and Curran (2003) developed a method
for leaning the parameters of a log-linear model for syntac-
tic CCG parsing given fully annotated normal–form parse
trees. Watkinson and Manandhar (1999) presented an un-
supervised approach for learning CCGs that, again, does
not perform any semantic analysis. We know of only one
previous system (Bos, Clark, Steedman, Curran, & Hock-
enmaier, 2004) that learns CCGs with semantics. However,
this approach requires fully–annotated CCG derivations as
supervised training data. As such, the techniques they em-
ployed are not applicable to learning in our framework.

Evaluation results

System English Spanish
Rec. Pre. F1 Rec. Pre. F1

WASP 70.0 95.4 80.8 72.4 91.2 81.0
Lu08 72.8 91.5 81.1 79.2 95.2 86.5
UBL 78.1 88.2 82.7 76.8 86.8 81.4

UBL-s 80.4 80.8 80.6 79.7 80.6 80.1

System Japanese Turkish
Rec. Pre. F1 Rec. Pre. F1

WASP 74.4 92.0 82.9 62.4 97.0 75.9
Lu08 76.0 87.6 81.4 66.8 93.8 78.0
UBL 78.5 85.5 81.8 70.4 89.4 78.6

UBL-s 80.5 80.6 80.6 74.2 75.6 74.9
Table 1: Performance across languages on Geo250 with
variable-free meaning representations.

System English Spanish
Rec. Pre. F1 Rec. Pre. F1

λ-WASP 75.6 91.8 82.9 80.0 92.5 85.8
UBL 78.0 93.2 84.7 75.9 93.4 83.6

UBL-s 81.8 83.5 82.6 81.4 83.4 82.4

System Japanese Turkish
Rec. Pre. F1 Rec. Pre. F1

λ-WASP 81.2 90.1 85.8 68.8 90.4 78.1
UBL 78.9 90.9 84.4 67.4 93.4 78.1

UBL-s 83.0 83.2 83.1 71.8 77.8 74.6

Table 2: Performance across languages on Geo250 with
lambda-calculus meaning representations.

However, UBL achieves much higher precision and
better overall F1 scores, which are generally compa-
rable to the best performing systems.

The comparison to the CCG induction techniques
of ZC05 and ZC07 (Table 3) is particularly striking.
These approaches used language-specific templates
to propose new lexical items and also required as in-
put a set of hand-engineered lexical entries to model
phenomena such as quantification and determiners.
However, the use of higher-order unification allows
UBL to achieve comparable performance while au-
tomatically inducing these types of entries.

For a more qualitative evaluation, Table 4 shows a
selection of lexical items learned with high weights
for the lambda-calculus meaning representations.
Nouns such as “state” or “estado” are consistently
learned across languages with the category S|NP ,
which stands in for the more conventional N . The
algorithm also learns language-specific construc-
tions such as the Japanese case markers “no” and
“wa”, which are treated as modifiers that do not add
semantic content. Language-specific word order is

System Variable Free Lambda Calculus
Rec. Pre. F1 Rec. Pre. F1

Cross Validation Results
KRISP 71.7 93.3 81.1 – – –
WASP 74.8 87.2 80.5 – – –
Lu08 81.5 89.3 85.2 – – –

λ-WASP – – – 86.6 92.0 89.2
Independent Test Set

ZC05 – – – 79.3 96.3 87.0
ZC07 – – – 86.1 91.6 88.8
UBL 81.4 89.4 85.2 85.0 94.1 89.3

UBL-s 84.3 85.2 84.7 87.9 88.5 88.2

Table 3: Performance on the Geo880 data set, with varied
meaning representations.

also encoded, using the slash directions of the CCG
categories. For example, “what” and “que” take
their arguments to the right in the wh-initial English
and Spanish. However, the Turkish wh-word “nel-
erdir” and the Japanese question marker “nan desu
ka” are sentence final, and therefore take their argu-
ments to the left. Learning regularities of this type
allows UBL to generalize well to unseen data.

There is less variation and complexity in the
learned lexical items for the variable-free represen-
tation. The fact that the meaning representation is
deeply nested influences the form of the induced
grammar. For example, recall that the sentence
“what states border texas” would be paired with the
meaning answer(state(borders(tex))). For this
representation, lexical items such as:

what � S/NP : λx.answer(x)

states �NP/NP : λx.state(x)

border �NP/NP : λx.borders(x)

texas �NP : tex

can be used to construct the desired output. In
practice, UBL often learns entries with only a sin-
gle slash, like those above, varying only in the di-
rection, as required for the language. Even the
more complex items, such as those for quantifiers,
are consistently simpler than those induced from
the lambda-calculus meaning representations. For
example, one of the most complex entries learned
in the experiments for English is the smallest �
NP\NP/(NP |NP):λfλx.smallest one(f(x)).

There are also differences in the aggregate statis-
tics of the learned lexicons. For example, the aver-
age length of a learned lexical item for the (lambda-

(on Geoquery 880 corpus)

Abstract Meaning Representations

• Pros and cons of Geoquery:
‣ semantic representations are trees — (too) easy

‣ very small

• Since 2014, much larger corpora available:  
~40k AMRs, graphs as semantic representations.

want

i read -

book anyone careless

ARG0 A
R

G
1

polarity

ARG1 A
R

G
0

mannerpo
ss

believe

ARG1

girl

A
R
G
0

Y

1

1

X

Y

1 2 2 1

want

A
RG
0 A

RG
1

Figure 1: Left: an AMR for the sentence “I do not want anyone to read my book carelessly”; right: two
example HRG rules.

arguments (such as “ARG0”, “ARG1”, etc.) and ones for modification (such as “time”, “manner”, etc.).
Graphs are also used as semantic representations in the semantic dependency graphs from the SemEval-
2014 Shared Task (Oepen et al., 2014). These are either manually constructed or converted from deep
semantic analyses using large-scale HPSG grammars.

The recent availability of graph-based sembanks has triggered some research on semantic parsing
into graphs. Flanigan et al. (2014) and Martins and Almeida (2014) do this by adapting dependency
parsers to compute dependency graphs rather than dependency trees. They predict graph edges from cor-
pus statistics, and do not use an explicit grammar; they are thus very different from traditional approaches
to semantic construction.

Chiang et al. (2013) present a statistical parser for synchronous string/graph grammars based on
hyperedge replacement grammars (HRGs, Drewes et al., 1997). HRGs manipulate hypergraphs, which
may contain hyperedges with an arbitrary number k of endpoints, labeled with nonterminal symbols.
Each rule application replaces one such hyperedge with the graph on the right-hand side, identifying the
endpoints of the nonterminal hyperedge with the “external nodes” of the graph. Jones et al. (2012) and
Jones et al. (2013) describe a number of ways to infer HRGs from corpora. However, previous work
has not demonstrated the suitability of HRG for linguistically motivated semantic construction. Typical
published examples, such as the HRG rules from Chiang et al. (2013) shown in Fig. 1 on the right, are
designed for succinctness of explanation, not for linguistic adequacy (in the figure, the external nodes
are drawn shaded). Part of the problem is that HRG rules are easier to understand from a top-down
perspective (in contrast to most work on compositional semantic construction) and combine arbitrarily
complex substructures in single steps: the Y hyperedge in the first example rule is like a higher-order
lambda variable that will be applied to three nodes introduced in that rule. The grammar formalism we
introduce here builds graphs bottom-up, using a small inventory of simple graph-combining operations,
and uses names for semantic argument positions that are much longer-lived than the “external nodes” of
HRG.

2.3 Interpreted regular tree grammars

This paper introduces synchronous string/graph grammars based on interpreted regular tree grammars
(IRTGs; Koller and Kuhlmann, 2011). We give an informal review of IRTGs here. For a more precise
definition, see Koller and Kuhlmann (2011).

Informally speaking, an IRTG G = (G, (h
1

,A
1

), . . . , (hk,Ak)) derives a language k-tuples of ob-
jects, such as strings, trees, or graphs (see the example in Fig. 2). It does this in two conceptual steps.
First, we build a derivation tree using a regular tree grammar G. Regular tree grammars (RTGs; see

“I don’t want anyone to read my book carelessly.”

Dependency-style AMR parsing

JAMR; Flanigan et al. 2014

“The boy wants to visit New York City.”

Dependency-style AMR parsing

JAMR; Flanigan et al. 2014

“The boy wants to visit New York City.”

Concept Identification: determine atomic graph for each word.

Dependency-style AMR parsing

JAMR; Flanigan et al. 2014

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

“The boy wants to visit New York City.”

Concept Identification: determine atomic graph for each word.

Dependency-style AMR parsing

JAMR; Flanigan et al. 2014

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

“The boy wants to visit New York City.”

Concept Identification: determine atomic graph for each word.

Dependency-style AMR parsing

JAMR; Flanigan et al. 2014

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

“The boy wants to visit New York City.”

Concept Identification: determine atomic graph for each word.

Dependency-style AMR parsing

JAMR; Flanigan et al. 2014

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

“The boy wants to visit New York City.”

Concept Identification: determine atomic graph for each word.

Dependency-style AMR parsing

JAMR; Flanigan et al. 2014

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

“The boy wants to visit New York City.”

Concept Identification: determine atomic graph for each word.

Relation Identification: add all edges with positive weight; then repeatedly 
add least negative edge that connects subgraphs.

Dependency-style AMR parsing

JAMR; Flanigan et al. 2014

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

“The boy wants to visit New York City.”

Concept Identification: determine atomic graph for each word.

Relation Identification: add all edges with positive weight; then repeatedly 
add least negative edge that connects subgraphs.

1

2

1
-1

-2

-2

Dependency-style AMR parsing

JAMR; Flanigan et al. 2014

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

“The boy wants to visit New York City.”

Concept Identification: determine atomic graph for each word.

Relation Identification: add all edges with positive weight; then repeatedly 
add least negative edge that connects subgraphs.

1

2

1
-1

-2

-2

Dependency-style AMR parsing

JAMR; Flanigan et al. 2014

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

“The boy wants to visit New York City.”

Concept Identification: determine atomic graph for each word.

Relation Identification: add all edges with positive weight; then repeatedly 
add least negative edge that connects subgraphs.

1

2

1
-1

-2

-2

Dependency-style AMR parsing

JAMR; Flanigan et al. 2014

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

“The boy wants to visit New York City.”

Concept Identification: determine atomic graph for each word.

Relation Identification: add all edges with positive weight; then repeatedly 
add least negative edge that connects subgraphs.

1

2

1
-1

-2

-2

Dependency-style AMR parsing

JAMR; Flanigan et al. 2014

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

The

boy

wants to

visit

New York

City

ø ø

boy

want-01

visit-01

city

name

“New”

“York”

“City”

name

op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;) =
P

e2EG
 >g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that hV,E(0)

i is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`
�! v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.
Note also that because we have kept exactly one
edge between every pair of nodes, hV,Ei is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
hV,Ei and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |

2
). MSCG

can be implemented efficiently in O(|V |

2
log |V |)

time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |

2
log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of hV,Ei

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i)

= hV,E(i)
i:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

“The boy wants to visit New York City.”

Concept Identification: determine atomic graph for each word.

Relation Identification: add all edges with positive weight; then repeatedly 
add least negative edge that connects subgraphs.

1

2

1
-1

-2

-2

Issues with JAMR

• JAMR can draw edge between any two nodes;  
syntactic structure of sentence used only indirectly.

• Semantic representations for words don’t know
anything about their semantic arguments.

• Edges for control verbs added arbitrarily, not
because linguistic principle of control discovered.

• No notion of compositionality!

Compositional AMR Parsing

Gwant

Gsleep Gsound

MODm

APPv Gwriter

APPs

"The writer wants to sleep soundly."

pa
rs

in
g

1834

APPs

Gwant

APPo
MODm

Gsleep Gsoundly

Gwriter

want

AR
G0

ARG1

person

write

ARG0

sleep
ARG0

sound

m
an
ne
r

sleep

s

AR
G0

sound

m
anner

(a) (b) (c) (d)
want

AR
G0

ARG1

sleep
ARG0

sound

m
an
ne
r

s

Figure 2: (a) An AM-term with its value (b), along with the values for its subexpressions (c) t1 =

MODm(Gsleep, Gsound) and (d) t2 = APPo(Gwant, t1).

APPs[3,2]

Gwant[3]

APPo[3,5]

MODm[5,6]

Gsleep[5] Gsoundly[6]

Gwriter[2]

(a)

2: Gwriter

6: Gsoundly

4: ⊥5: Gsleep

APP s

AP
P o

IGNORE

M
O

D m

(b)

1: ⊥

IGNORE

3: Gwant

Figure 3: (a) An indexed AM term and (b) an AM
dependency tree, linking the term in Fig. 2;a to the
sentence “The writer wants to sleep soundly”.

the same AM dependency tree evaluate to the same
as-graph. We define a well-typed AM dependency
tree as one that represents a well-typed AM term.

Because not all words in the sentence contribute
to the AMR, we include a mechanism for ignoring
words in the input. As a special case, we allow the
constant ?, which represents a dummy as-graph
(of type ?) which we use as the semantic value
of words without a semantic value in the AMR.
We furthermore allow the edge label IGNORE in an
AM dependency tree, where IGNORE(⌧1, ⌧2) = ⌧1
if ⌧2 = ? and is undefined otherwise; in particular,
an AM dependency tree with IGNORE edges is only
well-typed if all IGNORE edges point into ? nodes.
We keep all other operations f(⌧1, ⌧2) as is, i.e. they
are undefined if either ⌧1 or ⌧2 is ?, and never yield
? as a result. When reconstructing an AM term
from the AM dependency tree, we skip IGNORE
edges, such that the subtree below them will not
contribute to the overall AMR.

4.2 Converting AMRs to AM terms

In order to train a model that parses sentences into
AM dependency trees, we need to convert an AMR
corpus – in which sentences are annotated with
AMRs – into a treebank of AM dependency trees.
We do this in three steps: first, we break each AMR
up into elementary graphs and identify their roots;
second, we assign sources and annotations to make
elementary as-graphs out of them; and third, com-
bine them into indexed AM terms.

For the first step, an aligner uses hand-written
heuristics to identify the string token to which each

node in the AMR corresponds (see Section C in the
Supplementary Materials for details). We proceed
in a similar fashion as the JAMR aligner (Flanigan
et al., 2014), i.e. by starting from high-confidence
token-node pairs and then extending them until the
whole AMR is covered. Unlike the JAMR aligner,
our heuristics ensure that exactly one node in each
elementary graph is marked as the root, i.e. as the
node where other graphs can attach their edges
through APP and MOD. When an edge connects
nodes of two different elementary graphs, we use
the “blob decomposition” algorithm of Groschwitz
et al. (2017) to decide to which elementary graph
it belongs. For the example AMR in Fig. 2b, we
would obtain the graphs in Fig. 1 (without source
annotations). Note that ARG edges belong with
the nodes at which they start, whereas the “manner”
edge in Gsoundly goes with its target.

In the second step we assign source names and
annotations to the unlabeled nodes of each elemen-
tary graph. Note that the annotations are crucial
to our system’s ability to generate graphs with
reentrancies. We mostly follow the algorithm of
Groschwitz et al. (2017), which determines neces-
sary annotations based on the structure of the given
graph. The algorithm chooses each source name de-
pending on the incoming edge label. For instance,
the two leaves of Gwant can have the source labels
S and O because they have incoming edges labeled
ARG0 and ARG1. However, the Groschwitz algo-
rithm is not deterministic: It allows object promo-
tion (the sources for an ARG3 edge may be O3, O2,
or O), unaccusative subjects (promoting the mini-
mal object to S if the elementary graph contains an
ARGi-edge (i > 0) but no ARG0-edge (Perlmutter,
1978)), and passive alternation (swapping O and S).
To make our as-graphs more consistent, we prefer
constants that promote objects as far as possible,
use unaccusative subjects, and no passive alterna-
tion, but still allow constants that do not satisfy
these conditions if necessary. This increased our
Smatch score significantly.

Finally, we choose an arbitrary AM dependency

bottom-up 
evaluation

(Groschwitz et al., ACL 2018)

AM algebra
Two operations for combining s-graphs:  

Apply (= head + complement), Modify (= head + modifier).

APPv(,)
<s>

want

AR
G0

<v>

ARG1

<s>

sleep

AR
G
0

<s>

want

AR
G0

ARG1

sleep
ARG0

=

MODm(,)
sound

m

m
an
ne
r

<s>

sleep

AR
G
0 =

sound

manner

<s>

sleep

AR
G0

APP and MOD can be expressed in terms of rename, forget, merge.

(Groschwitz et al., IWCS 2017; inspired by Copestake et al. 2001)

Approach

• Convert (string, graph) training data into  
(string, supertags + dependencies) training data.

• Train neural supertagger + dependency parser 
to assign scores to supertags + dependencies.
‣ easier than predicting the whole graph; compositional!

• At evaluation time, compute highest-scoring  
well-typed dependency tree.
‣ well-typedness requirement makes this NP-complete

‣ solve approximately with CKY-style parsing algorithm

Converting training data

(Groschwitz et al., ACL 2018)

Gwant

Gsleep Gsound

MODm

APPv Gwriter

APPs

“The writer wants to sleep soundly.”

The writer wants to sleep soundly

Gwriter Gwant Gsleep Gsoundly⊥ ⊥

APPs APPv MODm

want
AR
G0

ARG1

person

write

ARG
0

sleep
ARG0

sound

m
an
ne
r

the writer wants to sleep soundly

want

AR
G0

ARG1

person

write

ARG
0

sleep
ARG0

sound

m
an
ne
r

the writer wants to sleep soundly

Neural model

x1

v1

x2

v2

xn

vn
...
...

ω(G[1]) ω(G[2]) ω(G[n])

ω(2 → n) ω(f | 2 → n)

2-layer BiLSTM

supertagger

edge labelsedge from 2 to n?

ω(2 → n) = log P(edge from 2 → n | x) is score for this edge.
Analogously for supertags and edge labels.

(cf. Lewis et al. 2014; Kiperwasser & Goldberg 2016)

Evaluation

• Train and test on LDC2015E86 and LDC2017T10
AMRBank corpora.

• Baselines (both type-unaware):
‣ fixed-tree decoder that chooses best supertags and edge

labels while ignoring type requirements

‣ JAMR-style: remove all unlabeled nodes from elementary
s-graphs, then use dependency model to predict edges

Results

1838

we collect the type for each encountered name (e.g.
“person” for “Agatha Christie”), and correct it in
the output if the tagger made a different prediction.
We recover dates and numbers straightforwardly.

7.3 Supertagger accuracy

All of our models rely on the supertagger to predict
elementary as-graphs; they differ only in the edge
scores. We evaluated the accuracy of the supertag-
ger on the converted development set (in which
each token has a supertag) of the 2015 data set, and
achieved an accuracy of 73%. The correct supertag
is within the supertagger’s 4 best predictions for
90% of the tokens, and within the 10 best for 95%.

Interestingly, supertags that introduce grammat-
ical reentrancies are predicted quite reliably, al-
though they are relatively rare in the training data.
The elementary as-graph for subject control verbs
(see Gwant in Fig. 1) accounts for only 0.8% of
supertags in the training data, yet 58% of its oc-
currences in the development data are predicted
correctly (84% in 4-best). The supertag for VP co-
ordination (with type [OP1[S], OP2[S]]) makes up
for 0.4% of the training data, but 74% of its oc-
currences are recognized correctly (92% in 4-best).
Thus the prediction of informative types for indi-
vidual words is feasible.

7.4 Comparison to Baselines

Type-unaware fixed-tree baseline. The fixed-tree
decoder is built to ensure well-typedness of the pre-
dicted AM dependency trees. To investigate to
what extent this is required, we consider a baseline
which just adds the individually highest-scoring
supertags and edge labels to the unlabeled depen-
dency tree tu, ignoring types. This leads to AM
dependency trees which are not well-typed for 75%
of the sentences (we fall back to the largest well-
typed subtree in these cases). Thus, an off-the-
shelf dependency parser can reliably predict the
tree structure of the AM dependency tree, but cor-
rect supertag and edge label assignment requires a
decoder which takes the types into account.

JAMR-style baseline. Our elementary as-
graphs differ from the elementary graphs used in
JAMR-style algorithms in that they contain explicit
source nodes, which restrict the way in which they
can be combined with other as-graphs. We investi-
gate the impact of this choice by implementing a
strong JAMR-style baseline. We adapt the AMR-to-
dependency conversion of Section 4.2 by removing
all unlabeled nodes with source names from the

Model 2015 2017

Ours
local edge + projective decoder 70.2±0.3 71.0±0.5

local edge + fixed-tree decoder 69.4±0.6 70.2±0.5

K&G edge + projective decoder 68.6±0.7 69.4±0.4

K&G edge + fixed-tree decoder 69.6±0.4 69.9±0.2

Baselines
fixed-tree (type-unaware) 26.0±0.6 27.9±0.6

JAMR-style 66.1 66.2
Previous work
CAMR (Wang et al., 2015) 66.5 -
JAMR (Flanigan et al., 2016) 67 -
Damonte et al. (2017) 64 -
van Noord and Bos (2017b) 68.5 71.0

Foland and Martin (2017) 70.7 -
Buys and Blunsom (2017) - 61.9

Table 1: 2015 & 2017 test set Smatch scores

elementary graphs. For instance, the graph Gwant
in Fig. 1 now only consists of a single “want” node.
We then aim to directly predict AMR edges be-
tween these graphs, using a variant of the local
edge scoring model of Section 5.3 which learns
scores for each edge in isolation. (The assumption
for the original local model, that each node has
only one incoming edge, does not apply here.)

When parsing a string, we choose the highest-
scoring supertag for each word; there are only 628
different supertags in this setting, and 1-best su-
pertagging accuracy is high at 88%. We then follow
the JAMR parsing algorithm by predicting all edges
whose score is over a threshold (we found -0.02 to
be optimal) and then adding edges until the graph
is connected. Because we do not predict which
node is the root of the AMR, we evaluated this
model as if it always predicted the root correctly,
overestimating its score slightly.

7.5 Results

Table 1 shows the Smatch scores (Cai and Knight,
2013) of our models, compared to a selection of
previously published results. Our results are av-
erages over 4 runs with 95% confidence intervals
(JAMR-style baselines are single runs). On the
2015 dataset, our best models (local + projective,
K&G + fixed-tree) outperform all previous work,
with the exception of the Foland and Martin (2017)
model; on the 2017 set we match state of the art re-
sults (though note that van Noord and Bos (2017b)
use 100k additional sentences of silver data). The
fixed-tree decoder seems to work well with either
edge model, but performance of the projective de-
coder drops with the K&G edge scores. It may be
that, while the hinge loss used in the K&G edge
scoring model is useful to finding the correct un-

*

*) uses 100k additional sentences of silver data

Conclusion

• Challenge in compositional semantic construction:
Where do we get large-scale grammars?

• Semantic parsing: Learn such grammars from
corpora with semantic annotations.
‣ GeoQuery: small corpus of trees

‣ AMRBank: new hotness

• Very active research topic right now.

