Semantic parsing

Computational Linguistics

Alexander Koller

25 January 2019

Computing with meanings

- Ancient problem: *inference*.
 - How can we tell whether a sentence follows from others?
 - Can we compute this automatically?

All men are mortal.

Socrates is a man.

Therefore, Socrates is mortal.

Formal meaning representations

- Aristotle with more modern tools (ca. 2000):
 - Compute *meaning representation* in some formal language (e.g. predicate logic)
 - so that it captures something relevant about the sentence's meaning (e.g. its *truth conditions*)
 - and then use reasoning tools for the formal language
 (e.g. a *theorem prover* for predicate logic)

All men are mortal.

Socrates is a man.

Therefore, Socrates is mortal.

 $\forall x. man(x) \rightarrow mortal(x)$

man(s)

mortal(s)

Compositional semantics

$S \rightarrow NP VP$	$\langle S \rangle = \langle NP \rangle (\langle VP \rangle)$
$VP \rightarrow V NP$	$\langle VP \rangle = \lambda y \langle NP \rangle (\langle V \rangle (y))$
$NP \rightarrow Det N$	$\langle NP \rangle = \langle Det \rangle (\langle N \rangle)$
$NP \rightarrow John$	$\langle NP \rangle = \lambda P P(j^*)$
$V \rightarrow eats$	$\langle V \rangle = eat'$
$Det \rightarrow a$	$\langle \text{Det} \rangle = \lambda P \lambda Q \exists x P(x) \land Q(x)$
$N \rightarrow sandwich$	$\langle N \rangle = sw'$

when you apply this syntax rule ...

... construct λ -term for parent from λ -terms for children like this

Example

Semantic parsing

- Open issue in classical semantics construction: Where do we get large grammar that supports it?
- Current trend in CL is *semantic parsing*: learn mapping from sentence to formal meaning representation using statistical methods.
- E.g. from Geoquery corpus (880 sentences):

What is the smallest state by area? answer(x₁, smallest(x₂, state(x₁), area(x₁, x₂)))

With synchronous grammars

 Use a synchronous grammar (≈ SCFG) to simultaneously generate strings and λ-expressions.

Q → what is the F	Q → answer(x ₁ , F(x ₁))
F → smallest F F	F → λ x ₁ smallest(x ₂ , F(x ₁), F(x ₁ , x ₂))
$F \rightarrow state$	$F \rightarrow \lambda x_1 \text{ state}(x_1)$
$F \rightarrow by area$	$F \rightarrow \lambda x_1 \lambda x_2 \text{ area}(x_1, x_2)$

what is the smallest state by area

- alignments between words and nodes
- unambiguous structure of meaning representation

- alignments between words and nodes
- unambiguous structure of meaning representation

- alignments between words and nodes
- unambiguous structure of meaning representation

- alignments between words and nodes
- unambiguous structure of meaning representation

- alignments between words and nodes
- unambiguous structure of meaning representation

- alignments between words and nodes
- unambiguous structure of meaning representation

- alignments between words and nodes
- unambiguous structure of meaning representation

Combinatory categorial grammar

Semantics in CCG

 $\frac{John}{NP: h^{*}} > T \qquad eats$ $\frac{S/(S\setminus NP): \lambda P.P(h^{*})}{S/(NP): \lambda x.(\lambda P.P(h^{*}))(eat'(x)) \Rightarrow_{\beta} \lambda x.eat'(x)(h^{*})} > B \qquad a \text{ sandwich}$ $\frac{S/NP: \lambda x.(\lambda P.P(h^{*}))(eat'(x)) \Rightarrow_{\beta} \lambda x.eat'(x)(h^{*})}{S: (\lambda x.eat'(x)(h^{*}))(sw') \Rightarrow_{\beta} eat'(sw')(h^{*})} > S$

Zettlemoyer & Collins

GENLEX: build candidates for lexicon entries

	Rules	Categories produced from logical form
Input Trigger	Output Category	$\arg \max(\lambda x.state(x) \land borders(x, texas), \lambda x.size(x))$
constant c	NP:c	NP: texas
arity one predicate p_1	$N:\lambda x.p_1(x)$	$N:\lambda x.state(x)$
arity one predicate p_1	$S \setminus NP : \lambda x. p_1(x)$	$S \setminus NP : \lambda x.state(x)$
arity two predicate p_2	$(S \setminus NP)/NP : \lambda x.\lambda y.p_2(y,x)$	$(S \setminus NP)/NP : \lambda x. \lambda y. borders(y, x)$
arity two predicate p_2	$(S\backslash NP)/NP:\lambda x.\lambda y.p_2(x,y)$	$(S \setminus NP)/NP : \lambda x. \lambda y. borders(x, y)$
arity one predicate p_1	$N/N: \lambda g.\lambda x.p_1(x) \wedge g(x)$	$N/N: \lambda g.\lambda x.state(x) \wedge g(x)$
literal with arity two predicate p_2 and constant second argument c	$N/N:\lambda g.\lambda x.p_2(x,c)\wedge g(x)$	$N/N: \lambda g. \lambda x. borders(x, texas) \land g(x)$
arity two predicate p_2	$(N \setminus N)/NP : \lambda x.\lambda g.\lambda y.p_2(x,y) \land g(x)$	$(N \setminus N)/NP : \lambda g.\lambda x.\lambda y.borders(x, y) \land g(x)$
an $\arg \max / \min$ with second argument arity one function f	$NP/N: \lambda g. \arg \max / \min(g, \lambda x. f(x))$	$NP/N: \lambda g. \arg \max(g, \lambda x. size(x))$
an arity one numeric-ranged function <i>f</i>	$S/NP:\lambda x.f(x)$	$S/NP:\lambda x.size(x)$

Log-linear probability models

• Define probability of parse tree in terms of *features*:

$$P(t \mid w) = \frac{e^{\theta \cdot f(t,w)}}{\sum_{t'} e^{\theta \cdot f(t',w)}}$$

where $\theta \cdot f(t,w) = \theta_1 \cdot f_1(t,w) + \ldots + \theta_n \cdot f_n(t,w)$

- Features f(t,w) can capture arbitrary properties of t and w.
 - Here: Each feature counts uses of one grammar rule.
- Train weight vector θ from data.

Zettlemoyer & Collins

overall learning algorithm

Algorithm:

• For $t = 1 \dots T$

Step 1: (Lexical generation)

- For i = 1 ... n:
 - Set $\lambda = \Lambda_0 \cup \text{GENLEX}(S_i, L_i)$.
 - Calculate $\pi = \text{PARSE}(S_i, L_i, \lambda, \overline{\theta}^{t-1}).$
 - Define λ_i to be the set of lexical entries in π .

• Set
$$\Lambda_t = \Lambda_0 \cup \bigcup_{i=1}^n \lambda_i$$

Step 2: (Parameter Estimation)

• Set
$$\bar{\theta}^t = \text{ESTIMATE}(\Lambda_t, E, \bar{\theta}^{t-1})$$

Evaluation results

Sustam	Variable Free			Lambda Calculus		
System	Rec.	Pre.	F1	Rec.	Pre.	F1
Cross Validation Results						
KRISP	71.7	93.3	81.1	—	_	—
WASP	74.8	87.2	80.5	—	—	—
Lu08	81.5	89.3	85.2		—	_
λ -WASP	_	—	—	86.6	92.0	89.2
Independent Test Set						
ZC05	—	_	—	79.3	96.3	87.0
ZC07	_	—	—	86.1	91.6	88.8
UBL	81.4	89.4	85.2	85.0	94.1	89.3
UBL-s	84.3	85.2	84.7	87.9	88.5	88.2

(on Geoquery 880 corpus)

Abstract Meaning Representations

- Pros and cons of Geoquery:
 - ▶ semantic representations are trees (too) easy
 - very small
- Since 2014, much larger corpora available:
 ~40k AMRs, graphs as semantic representations.

"The boy wants to visit New York City."

"The boy wants to visit New York City."

Concept Identification: determine atomic graph for each word.

"The boy wants to visit New York City."

boy

Concept Identification: determine atomic graph for each word.

"The boy wants to visit New York City."

boy

Concept Identification: determine atomic graph for each word.

"The boy wants to visit New York City."

want-01 visit-01

Concept Identification: determine atomic graph for each word.

"The boy wants to visit New York City."

Concept Identification: determine atomic graph for each word.

"The boy wants to visit New York City."

Concept Identification: determine atomic graph for each word.

Relation Identification: add all edges with positive weight; then repeatedly add least negative edge that connects subgraphs.

"The boy wants to visit New York City."

Concept Identification: determine atomic graph for each word.

Relation Identification: add all edges with positive weight; then repeatedly add least negative edge that connects subgraphs.

"The boy wants to visit New York City."

Concept Identification: determine atomic graph for each word.

Relation Identification: add all edges with positive weight; then repeatedly add least negative edge that connects subgraphs.

"The boy wants to visit New York City."

Concept Identification: determine atomic graph for each word.

Relation Identification: add all edges with positive weight; then repeatedly add least negative edge that connects subgraphs.

"The boy wants to visit New York City."

Concept Identification: determine atomic graph for each word.

Relation Identification: add all edges with positive weight; then repeatedly add least negative edge that connects subgraphs.

"The boy wants to visit New York City."

Concept Identification: determine atomic graph for each word.

Relation Identification: add all edges with positive weight; then repeatedly add least negative edge that connects subgraphs.

Issues with JAMR

- JAMR can draw edge between any two nodes; syntactic structure of sentence used only indirectly.
- Semantic representations for words don't know anything about their semantic arguments.
- Edges for control verbs added arbitrarily, not because linguistic principle of control discovered.
- No notion of compositionality!

Compositional AMR Parsing

(Groschwitz et al., ACL 2018)

AM algebra

Two operations for combining s-graphs: Apply (= head + complement), Modify (= head + modifier).

APP and MOD can be expressed in terms of rename, forget, merge.

(Groschwitz et al., IWCS 2017; inspired by Copestake et al. 2001)

Approach

- Convert (string, graph) training data into (string, supertags + dependencies) training data.
- Train neural supertagger + dependency parser to assign scores to supertags + dependencies.
 - easier than predicting the whole graph; compositional!
- At evaluation time, compute highest-scoring well-typed dependency tree.
 - well-typedness requirement makes this NP-complete
 - solve approximately with CKY-style parsing algorithm

Converting training data

(Groschwitz et al., ACL 2018)

Neural model

 $\omega(2 \rightarrow n) = \log P(\text{edge from } 2 \rightarrow n \mid \mathbf{x}) \text{ is score for this edge.}$ Analogously for supertags and edge labels.

(cf. Lewis et al. 2014; Kiperwasser & Goldberg 2016)

Evaluation

- Train and test on LDC2015E86 and LDC2017T10 AMRBank corpora.
- Baselines (both type-unaware):
 - fixed-tree decoder that chooses best supertags and edge labels while ignoring type requirements
 - JAMR-style: remove all unlabeled nodes from elementary s-graphs, then use dependency model to predict edges

Results

Model	2015	2017
Ours		
local edge + projective decoder	$70.2{\pm}0.3$	71.0 ±0.5
local edge + fixed-tree decoder	$69.4{\pm}0.6$	$70.2{\pm}0.5$
K&G edge + projective decoder	$68.6{\pm}0.7$	$69.4{\pm}0.4$
K&G edge + fixed-tree decoder	$69.6{\pm}0.4$	$69.9{\pm}0.2$
Baselines		
fixed-tree (type-unaware)	$26.0{\pm}0.6$	$27.9{\pm}0.6$
JAMR-style	66.1	66.2
Previous work		
CAMR (Wang et al., 2015)	66.5	-
JAMR (Flanigan et al., 2016)	67	-
Damonte et al. (2017)	64	-
van Noord and Bos (2017b)*	68.5	71.0
Foland and Martin (2017)	70.7	-
Buys and Blunsom (2017)	-	61.9

*) uses 100k additional sentences of silver data

Conclusion

- Challenge in compositional semantic construction: Where do we get large-scale grammars?
- Semantic parsing: Learn such grammars from corpora with semantic annotations.
 - GeoQuery: small corpus of trees
 - AMRBank: new hotness
- Very active research topic right now.