Latent Dirichlet Allocation

Computational Linguistics
Alexander Koller
15 January 2019
with help from Christoph Teichmann and illustrations by Martín Villalba

Today

- Today's lecture is about a method called Latent Dirichlet Allocation (LDA).
- We care about it for two reasons:
- It's an unsupervised method for identifying topics and words that are representative of them.
- It's a showcase for a family of statistical models called Bayesian models which have many uses in CL.

Let's start simple

- You and I are playing a coin-tossing game. I see you throw $63 \mathrm{xH}, 37 \mathrm{x}$ T. Should I believe that the coin is fair?
- Our model of the coin has one parameter, $\mathrm{p}=\mathrm{P}(\mathrm{H})$.
- Maximum-likelihood estimate: $\mathrm{p}=0.63$, i.e. not fair.
- But what about
- my uncertainty about p ?
- my prior beliefs about the fairness of the coin?

Bayesian Models

- ML estimation and similar methods deliver point estimates: a single value for each parameter that optimizes some criterion.
- Likelihood: P(observations | parameters)
- Bayesian models: estimate a probability distribution P (parameters | observations) over parameters.
- assume a prior over parameters, which encodes beliefs in parameter values before making any observations
- update prior to posterior after making some observations
- uncertainty about parameter values is reflected at all times in the pd

The Dirichlet distribution

- Take the parameter p itself as the value of a random variable.
- need a probability distribution over real numbers; more specifically, over tuples of numbers that sum to one
- We use the Dirichlet distribution.

$$
p_{1}, \ldots, p_{K} \sim \operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{K}\right) \text { means: }
$$

 the p_{i} sum to 1
this is the beta function (needed to normalize to 1)
$\alpha_{1}, \ldots, \alpha_{K}$ are called hyperparameters

Dirichlet distributions, K=2

$$
P\left(p_{1}, \ldots, p_{K}\right)=\frac{1}{B(\alpha)}\left(p_{1}^{\alpha_{1}-1} \cdot \ldots \cdot p_{K}^{\alpha_{K}-1}\right)
$$

Bayesian parameter estimation

- We are interested in pd $\mathrm{P}(\mathrm{M})$ over our model $\mathrm{M}=(\mathrm{p})$. This model is very simple; will make more complex later.
- Before we make any observations, we have a prior distribution: $\mathrm{P}(\mathrm{M})=\operatorname{Dir}_{\alpha, \alpha}(\mathrm{p}, 1-\mathrm{p})$
- We can then update this to a posterior distribution based on observed data:

Calculating posteriors

prior:

$$
P(p)=\operatorname{Dir}_{\alpha, \alpha}(p, 1-p) \propto p^{\alpha-1} \cdot(1-p)^{\alpha-1}
$$

likelihood:

$$
P(i \times \mathrm{H}, k \times \mathrm{T} \mid p)=p^{i} \cdot(1-p)^{k}
$$

posterior:

$$
\begin{aligned}
P(p \mid i \times \mathrm{H}, k \times \mathrm{T}) & \propto P(i \times \mathrm{H}, k \times \mathrm{T} \mid p) \cdot P(p) \\
& \propto p^{i} \cdot(1-p)^{k} \cdot p^{\alpha-1} \cdot(1-p)^{\alpha-1} \\
& =p^{i+\alpha-1} \cdot(1-p)^{k+\alpha-1}
\end{aligned}
$$

More precisely, we have:

$$
P(p \mid i \times \mathrm{H}, k \times \mathrm{T})=\operatorname{Dir}_{\alpha+i, \alpha+k}(p, 1-p)
$$

The Dirichlet distribution

$$
P\left(p_{1}, \ldots, p_{K}\right)=\frac{1}{B(\alpha)}\left(p_{1}^{\alpha_{1}-1} \cdot \ldots \cdot p_{K}^{\alpha_{K}-1}\right)
$$

Conjugate distributions

- Crucially, $P(M)$ and $P(M \mid D)$ have the same shape (product of Dirichlets). This is because Dirichlet and Categorical are conjugate distributions.
- because $\mathrm{K}=2$ for the coin, we really only used the Beta (not Dirichlet) and Bernoulli (not Categorical) distributions
- This is makes the math very convenient.
- The hyperparameters of the Dirichlets are updated by adding the observed counts to the hp . of the priors.
- priors thus perform smoothing in a very principled way

The next step

Say you come across some people who have been stabbed or poisoned.
You know that each of them was killed by a pirate or a ninja.
You can tell how each person died, but not by whom they were killed.

Our task

- We observe N people with their causes of death.
- Questions we are interested in:
- Who killed each villager?
$\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{N}} \in\{\mathrm{pi}, \mathrm{ni}\}$
- How many were killed by pirates, how many by ninjas? $\mathrm{P}(\mathrm{pi})=\theta_{\mathrm{pi}}, \mathrm{P}(\mathrm{ni})=\theta_{\text {ni; }}$ thus, $\theta_{\text {pi }}+\theta_{\text {ni }}=1$
- How likely is it that a pirate chooses to stab someone? $\mathrm{P}(\mathrm{st} \mid \mathrm{pi})=\phi_{\text {st|pi; }}$ thus, $\mathrm{P}(\mathrm{po} \mid \mathrm{pi})=\phi_{\mathrm{pol} \mid \mathrm{pi}}=1-\phi_{\mathrm{st} \mid \mathrm{pi}}$
- How likely is it that a ninja chooses to stab someone? $\mathrm{P}(\mathrm{st} \mid \mathrm{ni})=\phi_{\mathrm{st\mid ni}}$; thus, $\mathrm{P}(\mathrm{po} \mid \mathrm{ni})=\phi_{\mathrm{po} \mid n \mathrm{ni}}=1-\phi_{\mathrm{st\mid ni}}$

Fundamental approach

- Goal: Bayesian model with parameters $\theta, \phi_{\mathrm{pi}}, \phi_{\mathrm{ni}}$.
- maximum likelihood: try to estimate concrete values for each parameter
- Bayesian: estimate probability distribution $\mathrm{P}\left(\theta, \phi_{\mathrm{p}}, \phi_{\mathrm{ni}}\right)$
- In practice, the model will have latent variables z , which cannot be observed directly (e.g. pirate/ninja).
- Will marginalize over model parameters and work with $\mathrm{P}(\mathrm{z} \mid$ observations $)$ directly.

Generative story: Idea

-

ϕ_{ni}

Generative story: Idea

ϕ_{ni}

Generative story: Idea

Generative story: Idea

Generative story

- We assume deaths are generated as follows:
$\left(\theta_{\mathrm{p} i}, \theta_{\mathrm{ni}}\right) \sim \operatorname{Dir}(\alpha, \alpha)$
$\left(\phi_{\text {stlpi }}, \phi_{\text {polpi }}\right),\left(\phi_{\text {st|ni, }}, \phi_{\text {polni }}\right) \sim \operatorname{Dir}(\beta, \beta)$
$\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{K}} \sim \operatorname{Categorical}(\theta)$
$\mathrm{w}_{\mathrm{i}} \sim \operatorname{Categorical}\left(\phi_{\mathrm{zi}}\right)$
- That is:
- $\mathrm{P}\left(\mathrm{z}_{\mathrm{i}}=\mathrm{pi}\right)=\theta_{\mathrm{pi}}, \mathrm{P}\left(\mathrm{z}_{\mathrm{i}}=\mathrm{ni}\right)=\theta_{\mathrm{ni}}$

- if z_{i} came out as "pi", then $P\left(w_{i}=s t\right)=\phi_{s t \mid p i}$

I abbreviate $\theta=\left(\theta_{\text {pi }}, \theta_{\mathrm{ni}}\right), \phi_{\mathrm{pi}}=\left(\phi_{\mathrm{st}} \mid \mathrm{p}, \phi_{\mathrm{po} \mid \mathrm{pi}}\right), \phi_{\mathrm{ni}}=\left(\phi_{\mathrm{st} \mid \mathrm{ni}}, \phi_{\mathrm{po} \mid n \mathrm{ni}}\right)$.
α, β are assumed given and are called hyperparameters.

Supervised learning

If all killers are known, $\mathrm{P}(\mathrm{M} \mid \mathrm{D})$ is easy to compute.

$$
\begin{aligned}
P(M)= & \operatorname{Dir}_{\alpha, \alpha}(\theta) \cdot \operatorname{Dir}_{\beta, \beta}\left(\phi_{\mathrm{pi}}\right) \cdot \operatorname{Dir}_{\beta, \beta}\left(\phi_{\mathrm{ni}}\right) \\
& \propto \theta_{\mathrm{pi}}^{\alpha-1} \cdot \theta_{\mathrm{ni}}^{\alpha-1} \cdot \phi_{\mathrm{st} \mid \mathrm{pi}}^{\beta-1} \cdot \phi_{\mathrm{po} \mid \mathrm{pi}}^{\beta-1} \cdot \phi_{\mathrm{st} \mid \mathrm{ni}}^{\beta-1} \cdot \phi_{\mathrm{po} \mid \mathrm{ni}}^{\beta-1} \\
P(D \mid M) & =P\left(z_{1}=\mathrm{pi}, w_{1}=\mathrm{st}, z_{2}=\mathrm{ni}, w_{2}=\mathrm{po}\right) \\
& =\theta_{\mathrm{pi}} \cdot \phi_{\mathrm{st} \mid \mathrm{pi}} \cdot \theta_{\mathrm{ni}} \cdot \phi_{\mathrm{po} \mid \mathrm{ni}} \\
P(M \mid D) & \propto P(D \mid M) \cdot P(M) \\
& \propto \theta_{\mathrm{pi}}^{\alpha} \cdot \theta_{\mathrm{ni}}^{\alpha} \cdot \phi_{\mathrm{st} \mid \mathrm{pi}}^{\beta} \cdot \phi_{\mathrm{po} \mid \mathrm{pi}}^{\beta-1} \cdot \phi_{\mathrm{st} \mid \mathrm{ni}}^{\beta-1} \cdot \phi_{\mathrm{po}}^{\beta} \\
& \propto \operatorname{Dir}_{\alpha+1, \alpha+1}(\theta) \cdot \operatorname{Dir}_{\beta+1, \beta}\left(\phi_{\mathrm{pi}}\right) \cdot \operatorname{Dir}_{\beta, \beta+1}\left(\phi_{\mathrm{ni}}\right)
\end{aligned}
$$

Unsupervised learning

- In the original scenario, we can only observe deaths, not killers. Then $\mathrm{P}(\mathrm{D} \mid \mathrm{M})$ is less convenient:

$$
\begin{aligned}
P(D \mid M) & =P\left(w_{1}=\mathrm{st}, w_{2}=\mathrm{po} \mid M\right) \\
& =\sum_{k_{1}, k_{2} \in\{\mathrm{pi}, \mathrm{ni}\}} P\left(z_{1}=k_{1}, w_{1}=\mathrm{st}, z_{2}=k_{2}, w_{2}=\mathrm{po} \mid M\right)
\end{aligned}
$$

i	Z_{i}	w_{i}
1	$? ?$	
2	$? ?$	

- This sums over a number of terms that is exponential in N , and thus infeasible to compute.
- $\mathrm{M}=\left(\theta, \phi_{\mathrm{pi}}, \phi_{\mathrm{ni}}\right)$

Latent variables

- Many interesting quantities can be expressed in terms of distribution over the latent variables.

$$
P(z \mid w)=\int P(z, M \mid w) \mathrm{d} M=\int P(z \mid M, w) \cdot P(M \mid w) \mathrm{d} M
$$

- Some examples:

$$
\begin{aligned}
& \text { ninja/pirate mixing proportion } \\
& \frac{1}{N} \cdot E_{P(z \mid w)}\left[C\left(z_{i}=\text { ninja }\right)\right]
\end{aligned}
$$

pirate habits
$E_{P(z \mid w)}\left[C\left(z_{i}=\right.\right.$ pirate,$w_{i}=$ stab $\left.)\right] / E_{P(z \mid w)}\left[C\left(z_{i}=\right.\right.$ pirate $\left.)\right]$
probability that first villager was killed by a pirate
$E_{P(z \mid w)}\left[\| z_{1}=\right.$ pirate $\left.\|\right]$

Estimating expected values

- Expected values can be approximated by sampling. To compute $\mathrm{E}_{\mathrm{P}(\mathrm{X})}[\mathrm{f}(\mathrm{X})]$:
- draw S samples $\mathrm{x}^{(1)}, \ldots, \mathrm{x}^{(S)}$ from $\mathrm{P}(\mathrm{X})$
- estimate $E[f(X)] \approx \frac{1}{S} \cdot \sum_{i=1}^{S} f\left(x^{(i)}\right)$
- Example: To estimate π, sample points from square and count how many fall into the circle.
$\pi / 4 \approx E_{P(x, y)}\left[\left\|x^{2}+y^{2} \leq 1\right\|\right]$

EVs under latent variables

- We could estimate expected values under $\mathrm{P}(\mathrm{z} \mid \mathrm{w})$ using sampling. However, $\mathrm{P}(\mathrm{z} \mid \mathrm{w})$ is usually of a form that makes direct sampling difficult.
- Instead, we can use Gibbs sampling:
- Start from an initial guess $\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{N}}$ for the latent variables.
- Repeatedly resample guess for some z_{i} conditioned on all other z^{\prime}, i.e. from $P\left(z_{i} \mid w, z_{-i}\right)$. This is much easier than sampling from $\mathrm{P}(\mathrm{z} \mid \mathrm{w})$ itself.
- Can prove that probability of observing a sample for z as a whole converges to $\mathrm{P}(\mathrm{z} \mid \mathrm{w})$.

Gibbs Sampling

Transition probabilities

- It remains to determine the transition probabilities $\mathrm{P}\left(\mathrm{z}_{\mathrm{i}} \mid \mathrm{w}, \mathrm{z}_{\mathrm{i}}\right)$.
- Formula turns out to be remarkably simple:

$$
P\left(z_{i}=\mathrm{pi} \mid w, z_{-i}\right) \propto P\left(w, z_{-i}, z_{i}=\mathrm{pi}\right)
$$

$$
\begin{aligned}
& =\iint P\left(w, z_{-i}, z_{i}=\mathrm{pi}, \theta, \phi\right) \mathrm{d} \theta \mathrm{~d} \phi \\
& =\ldots
\end{aligned}
$$

\# people other than ithat were killed by pirates in current sample
\# people other than i
that were killed by pirates using method w^{\prime}

Topic models

learn: word probs. for (abstract) topics

given: raw documents
learn: topic mixture in each document

Latent Dirichlet Allocation

- Topic modeling is almost the same problem as the pirate/ninja problem:
- abstract topics $=\{$ pirate, ninja $\}$
- words in document $=\{$ stabbed, poisoned $\}$
- Full LDA makes two changes:
- can have T topics instead of just two, and also more than two different words
- there are $\mathrm{M}>1$ documents, and each document can have its own mixture θ_{d} of topics

Gibbs sampler for LDA

$$
\mathrm{W}=\text { vocabulary size } / \mathrm{T}=\text { number of topics }
$$

Examples

topic mixture for one article in Science

15 words with highest $\phi_{k, w}$ for each topic over whole corpus
(with made-up topic label)

Examples

development of topics from Science over time (1880-2002)

(Blei 2012)

Conclusion

- LDA and extensions for topic modeling.
- Topics interesting in their own right, also useful in various applications.
- Simplest useful Bayesian model in NLP.
- We used (collapsed) Gibbs sampling to approximate expected values.
- Alternative is Variational Bayes: approximate $\mathrm{P}(\mathrm{M} \mid \mathrm{D})$ on paper, then solve integral exactly.
- Limitation: Number T of topics must be given. We will fix this next time.

