Expressive grammar formalisms

Computational Linguistics

Alexander Koller

11 January 2019

Some points of business

[won't be here on January 29. No class that day.

Thu Jan 17, 16ct: Jason Eisner in the
LangSci colloquium.

Think ahead to your final projects. Send me half-
page project summaries by Tue Feb 5.

» We will discuss your final projects together on Feb 8.
Please make sure you have enough time.

The story so far

o Context-free grammars have many strengths.

» simple parsing algorithms with decent complexity
» simple but effective probability model (PCFGs)
» easily extended (e.g. to SCFGs)

o They also have weaknesses.

» Some phenomena in NL syntax not context-free; can't be
correctly modeled with (P)CFGs.

» Grammars cannot be lexicalized; hard to predict syntactic
structure in which a word is used.

o Let’slook at these in more detail.

Some NLs not context-free

... because they allow cross-serial dependencies.

Jan siit das mer es huus haend wele aastriiche.

Jan sait das mer dchind es huus haend wele laa aastriiche.

Jan sdit das mer em Hans es huus haend wele halfe aastriiche.

Jan sdit das mer dchind em Hans es huus haend wele laa halfe aastriiche.
* Jan sdit das mer em Hans dchind es huus haend wele laa halfe aastriiche.

* Jan sdit das mer em Hans em Sepp es huus haend wele laa hilfe aastriiche.

* Jan sait das mer em Hans es huus haend wele laa halfe aastriiche.

= wambrxcmdry = not context-free

(Shieber 1985 on Swiss German; everybody should read this paper)

Lexicalization

We call a grammar lexicalized if every piece of
grammatical information is tied to a word.

» For every word, there is a finite set of lexicon entries which
say how it can combine with others.

Advantages:

» convenient in manual grammar development

» can make parsing really, really fast (supertagging)

Most information in a CFG is in the production
rules, i.e. not lexicalized.

Lexicalization of CFGs

e Greibach normal form:

» lexicalized (exactly one terminal symbol per rule)
» can bring every CFG into weakly equivalent GNF

» but not strongly equivalent (parse trees change)

S
~ ~—
N VP A
/\ rp
Det N

| |
the dog runs

e Can we strongly lexicalize CFGs?

An attempt

N

A

Det N

S
o~
VP
\

| |
the dog runs

An attempt

N

/

S
\
VP
o7\
.’Det‘\‘ N

|
v the, dog runs

An attempt

\ Det N ‘.‘

\ the dog runs

An attempt

L g
; S
',—"~
" ~
‘y NP
) .

. '.
| .l'"" |I
\ the :' dog :

An attempt

\: Det‘\‘ N ‘|‘ ‘: l|
: “Fem ',:' :
\ the:- dog ioruns

Can combine tree parts by plugging them into each other:

An attempt

--.

- N
. ~
.

4
¢ q
¢
’ ‘. .=
/' 4 - " mm WK S
TR

(:' Det‘\‘ N ‘|‘ ‘:
A Y
v the.r dog i+ runs

4 ~
LR 4 ~.— ‘Q ’¢
§~-‘¢

Can combine tree parts by plugging them into each other:

S
NF Xp

runs

An attempt

--.

- N
. ~
.

4
¢ q
¢
‘ ‘o =
/' 4 - " mm WK S
TR

(:' Det‘\‘ N ‘|‘ ‘:
:| et | '.:'
v the.r dog i+ runs

[]
!
' 1
YA

4 ~
LR 4 ~.— ‘Q ’¢
§~-‘¢

Can combine tree parts by plugging them into each other:

S
N(\VP

| runs

An attempt

--.

- N
. ~
.

4
¢ q
¢
‘ ‘o =
/' 4 - " mm WK S
TR

(:' Det‘\‘ N ‘|‘ ‘:
:| et | '.:'
v the.r dog i+ runs

[]
!
' 1
YA

4 ~
LR 4 ~.— ‘Q ’¢
§~-‘¢

Can combine tree parts by plugging them into each other:

S
NP/_JN{ Vp
VAR
|

runs

dog

An attempt

--.

- N
. ~
.

4
¢ q
¢
‘ ‘o =
/' 4 - " mm WK S
TR

"¢' N R
(' Det‘\ N ‘| 1
f'~ t '

~ 1 []

. I.-_l." | 1 !
v the /s dog ir runs

~
~o=’

Can combine tree parts by plugging them into each other:

S
NP/\.JN{ \VP
Det De{ \N
|

the

runs

dog

Tree substitution grammars

o Tree substitution grammars (TSGs):
finite set of elementary trees for the words.

e Nodes of elementary trees:

» internal nodes, labeled with nonterminal symbols

» lexical anchors, leaves labeled with words or POS tags
(sometimes marked with diamond: AQ)

» substitution nodes, leaves marked with nonterminals

(usually marked with downarrow: Al)

Lexicalized elementary trees

unlexicalized lexicalized
S — S\ — S\
NPl/ \VP NPl VP NPl VP
AN \/ AN
. v~ NPl NP
ve~ NP | |
loves{ hates{
a ai(loves) ai(hates)
NP NP
NP | |
John¢ Mary{
oW a>(John) a(Mary)

TSGs: Derivations

Derivation step, t = t:

» ta tree that contains a substitution node u with label A
» e an elementary tree with root label A

» obtain t’ from t by replacing u with e

Derived tree t of grammar G: S =*t

and contains no more substitution nodes.

TSG describes:

» language of derived trees

» language of strings (= yields of derived trees)

Example derivation

S

/ \
NP{ /VP 1\|IP I\|IP
\
v Pl John Mary

10V€S TSG G

Si

Example derivation

S
/
NPl! \Vp

7
Y

loves

NP NP
| |
John Mary
TSG G

NPl
S =

Example derivation

S
— P NP
NPl VP I\|I |
V/ \NP | John Mary
|
10V€S TSGG
S
/ \
VP
VRN
Vv NPl

loves

NPl
S =

Example derivation

S
/
NPT W 1\|1P 1\|1P
RN
v N John Mary
|
10V€S TSGG
S S
™ ™
VP NP VP

| e
v~ NpL = John V. Nel

loves loves

S =

Example derivation

S
NPT p I\IP I\IP
V/ \NP | John Mary
lolfes TSG G
— S\ — S\ /S\
NPl VP NP VP NP VP
V/ \Npl = Iollm V/ \NPL = Iollm V/ \Np
lolfes lolfes lolfes Maltry

Example derivation

S
/
NP \vp 1\|1P 1\|1P
RN
v N John Mary
|
10V€S TSG G
/ S\ / S\ / S\
NPl VP NP VP NP VP

S+ o= V/ \Npl =]ollm V/ \Npl =]ollln V/ \Np

loves loves loves Mary

no more substitution nodes,
therefore derived tree of grammar

Lexicalized TSG

Call elementary tree lexicalized if it contains a
lexical anchor.

Call TSG lexicalized if all elementary trees
are lexicalized.

Can we strongly lexicalize all CFGs into TSGs?

» that is: is it true that for every CFG, there is a lexicalized
TSG such that derived trees of TSG = parse trees of CFG?

No!

e Counterexample (Schabes):

S—SS
S —a

e Path to highest leaf can be arbitrarily long;
but is bounded in any given lexicalized TSG.

S
S

P /\
NNy e
a a I

da a 4

|
a

Adjunction

o To lexicalize example CFG, we can use a second tree-
combining operation: adjunction.

Adjunction

o To lexicalize example CFG, we can use a second tree-
combining operation: adjunction.

Adjunction

o To lexicalize example CFG, we can use a second tree-
combining operation: adjunction.

Adjunction

o To lexicalize example CFG, we can use a second tree-
combining operation: adjunction.

foot node

Adjunction

o To lexicalize example CFG, we can use a second tree-
combining operation: adjunction.

foot no/'de A

Adjunction

o To lexicalize example CFG, we can use a second tree-
combining operation: adjunction.

=
A
/s\ S
/NP\ VP VP NP \VP
\ el
Dét N VP* }dv De{ N VP \Adv
| | | |

| |
the dog runs fast the dl)g runs fast

Lexicalization with adjunction

o Using these lexicalized elementary trees:

S S S
] s/ N / Y
2 2
e ... we can build all parse trees of the example CFG:

Lexicalization with adjunction

o Using these lexicalized elementary trees:

S S S
] s/ N / Y
2 2
e ... we can build all parse trees of the example CFG:

—> S

Lexicalization with adjunction

o Using these lexicalized elementary trees:

S S S
] s/ N / Y
2 2
e ... we can build all parse trees of the example CFG:

S
—>SI I{ \S

|
a

Lexicalization with adjunction

o Using these lexicalized elementary trees:

S S S
] s/ N / Y
2 2
e ... we can build all parse trees of the example CFG:

g —> S

—>

| /\s
2

|
a

Lexicalization with adjunction

o Using these lexicalized elementary trees:

S S S
! s/ \s / \s*
a a
e ... we can build all parse trees of the example CFG:
S
—> S
—)SI / \ S/ \S
S |
" | | s/ \s ¢
a a |

Lexicalization with adjunction

o Using these lexicalized elementary trees:

S S S
! s/ \s / \s*
a a
e ... we can build all parse trees of the example CFG:
S
S
| S |
" | | s/ \s ¢
a a |

Lexicalization with adjunction

o Using these lexicalized elementary trees:

S S S
! s/ \s / \s*
a a
e ... we can build all parse trees of the example CFG:
S S
—> S 7N
! S /\ | 3§
| | S g @ | | |
a a | a a a d

Tree-adjoining grammars

A (lexicalized) TAG grammar consists of a finite
set of lexicalized elementary trees.

» initial trees: have no foot node

» auxiliary trees: have foot nodes

Combine these using substitution and adjunction.

Can prove that for every CFG, there is a strongly
equivalent, lexicalized TAG gramar.

In addition to all context-free grammars, can also
describe languages that are not context-free.

Swiss German in TAG

@/\
A NPAN

NPl S* haend wele

) \
NP S
mler /

S@®

NP S*

K

em Hans

®

N

hilfe &

D
2" "\
S VP

NP{

NP

/N

es huus

aastriiche O

@
& \\\VP
/ AN |

hilfe aastriiche

/\P
/\@A

NP S~ haend wele

L e

mer

A

em Hans NP

YAN

es huus

<

Parsing

e Can define a CKY-style parser for TAG. Items:

» [A, 1k, ...] for substring from i to k
(vield of initial trees)

» <A,1i,j, k1, ...> for pair of substrings from i-j and k-1
(vield of auxiliary trees)

e Most expensive rule wraps one pair around another:

<A77;177;27i577:676176> <A77;27i377:47i5762777>
(A,i1,1%3,14, %6, B2, T)

e Thus, parsing complexity O(n®).

Categorial Grammars

e CFG and TAG based on phrase structure grammar:

» combine small constituents into larger constituents

» finite set of nonterminals {V, NP, ...} with no inherent
relationship; grammar says how they can be combined

e One alternative: categorial grammar.

» NL expressions have categories, e.g. S\NP

» category says what type of substrings it would like to be
combined with (NP) and what type of substring this will

produce (S) = functor-argument structure made explicit

» ... and on what side we're looking for the NP
(slash “/* = to the right; backslash “\” = to the left)

Example

John eats a sandwich

NP (S\NP)/NP NP/N N

NP

S\NP

S

CCG

e Combinatory Categorial Grammar (CCQG):
one grammar formalism for CG which is
very popular in computational linguistics.

e Grammar specifies:

» finite set of categories for each word in the lexicon

» rules for combining categories
(application, composition, type-raising)

Application

e Application rules combine a functor category with
the next argument that it is looking for.

X/Y Y Y X\Y
X X

forward application backward application

Example

Lexicon:
John: NP a: NP/N
eats: (S\NP)/NP sandwich: N
big: N/N
John eats a big sandwich
NP (S\NP)/NP NP/N N/N N
>
N
>
NP
>
S\NP
<

Composition

e Using the composition rules, can combine two

categories and pass “le

tover” arguments to the category

of the bigger string.
Harmonic composition:
XY Y/Z Y\Z X\Y
>B <B
X/Z X\Z
Crossed composition:
XY Y\Z Y/Z X\Y
>Bx <Bx
X\Z X/Z

Swiss German

e Crossed composition allows us to model
cross-serial dependencies.

das mer em Hans eshuus halfed aastriiche
NProm NP gat NPacc SisuB\NProm\NPgat/ VP VP\NP,c
S+SUB\NPnom\NPgat\NPycc
S+sUB\NProm \NPdat
S+sUB\NPhom
S+suB

(“VP” = abbreviation for S\NPnom)

>B

<

<

<

X

Some formal results

Can show that certain versions of TAG and CCG are
weakly equivalent: generate same language class.

» proof by Vijay-Shanker and Weir, early 1990s

» requires CCG grammars that are not entirely lexicalized
(Kuhlmann, Koller, Satta 2015)

Therefore, word problem of CCG is O(n®).

Polynomial CCG parser is a hassle to implement;
most implementations (e.g. OpenCCG, C&C) are
worst-case exponential.

Supertagging

e Practical parsing time is determined by degree of
lexical ambiguity: how many lexicon entries per word?

» This is worse for TAG than for CCG because CCG’s
combination operations more flexible than TAG.

» Not unusual to have hundreds of lexicon entries per word
in large-scale TAG grammar.

e Supertagging: use statistical methods to narrow down
lexicon entries before parsing starts.

» Use methods for other tagging tasks (e.g. POS tagging):
e.g. HMMs, CRFs, neural networks.

State of the art

o CCG parser of Lewis et al. (2016):

» very accurate supertagger based on neural nets (LSTMs)
» drastically simplified probability model (supertag-factored)

» very fast parsing through A* search and parallelization

Model QUESTIONS BIOINFER Parser Sentences
P R F1 |P R Fl1 per second
SpaCy** 778
C&C _ - 866|778 714 745
EAsYCCG 78.1 782 78.1|768 77.6 772 Berkeley GPU* (Hall et al., 2014) 687
C&C + RNN _ _ _ 0.1 75.5 777 Chen and Manning (2014)* 391
LSTM 87.6 874 87.5|80.1 809 80.5 C&C 66
LSTM + Dependencies | 88.2 87.9 88.0 | 77.8 80.1 79.4 EASYCCG 606
LSTM + Tri-training - - - 81.8 82.6 82.2 LSTM 214

LSTM + Dependencies 58
LSTM GPU 2670

Conclusion

e Rich literature on grammar formalism that are
more expressive than CFGs.

» expressive capacity needed for some linguistic phenomena
» more convenient for manual grammar development
» lexicalization

» see Syntactic Theory lecture if you want more details

e Parsing for these formalisms:

» higher asymptotic complexity than for CFGs

» if done right, supertagging for lexicalized grammars
can yield extremely fast parsers

