
Advanced PCFG models

Computational Linguistics 

Alexander Koller

4 December 2018

The story so far

• Train PCFG with MLE on the Penn Treebank 02-21.

• Compute parse trees for PTB 23 using Viterbi-CKY.

• Trick against data sparseness in lexicon: 
delete words, train and test on sequences of POS tags.

• This yields labeled f-score in the low 70’s.
‣ Why so low?

‣ How can we fix it?

Fundamental problem of PCFGs

• Context-free grammar: One rule can only “see”
parent and its children, not anything above or below.

• PCFG: Assumes statistical independence of all  
rewrite events.

S

NP VP NP → PRP?
NP → Det N?

Independence assumptions

2

PLURAL NOUN

NOUNDET
DET

ADJ

NOUN

NP NP

CONJ

NP PP

Treebank Grammar Scale
� Treebank grammars can be enormous!

� As a set of FSTs, the raw grammar has ~10K states (why?).
� Better parsers usually make the grammars larger, not smaller.

PCFGs and Independence

� Symbols in a PCFG define independence assumptions:

� At any node, the material inside that node is independent of the
material outside that node, given the label of that node.

� Any information that statistically connects behavior inside and
outside a node must flow through that node.

NP

S

VP
S → NP VP

NP → DT NN

NP

Non-Independence I
� Independence assumptions are often too strong.

� Example: the expansion of an NP is highly dependent
on the parent of the NP (i.e., subjects vs. objects).

� Also: the subject and object expansions are correlated!

11%
9%

6%

NP PP DT NN PRP

9% 9%

21%

NP PP DT NN PRP

7%
4%

23%

NP PP DT NN PRP

All NPs NPs under S NPs under VP

Non-Independence II

� Who cares?
� NB, HMMs, all make false assumptions!
� For generation, consequences would be obvious.
� For parsing, does it impact accuracy?

� Symptoms of overly strong assumptions:
� Rewrites get used where they don’t belong.
� Rewrites get used too often or too rarely.

In the PTB, this
construction is
for possessives

Breaking Up the Symbols

� We can relax independence assumptions by
encoding dependencies into the PCFG symbols:

� What are the most useful “features” to encode?

Parent annotation
[Johnson 98]

Marking
possessive NPs

Annotations

� Annotations split the grammar categories into sub-
categories (in the original sense).

� Conditioning on history vs. annotating
� P(NP^S → PRP) is a lot like P(NP → PRP | S)
� P(NP-POS → NNP POS) isn’t history conditioning.

� Feature / unification grammars vs. annotation
� Can think of a symbol like NP^NP-POS as

NP [parent:NP, +POS]

� After parsing with an annotated grammar, the
annotations are then stripped for evaluation.

PTB statistics, from slides by Dan Klein

Independence assumptions

• Accurate disambiguation of PP attachment requires 
lexical information.
‣ I shot the elephant with a long trunk.

‣ I shot the elephant with a long rifle.

• PP attachment influenced by choice of P.
‣ Collins note: “workers dumped sacks into a bin”

‣ into-PPs in PTB 9x more likely to attach to VP than to N

• PCFGs rely on nonterminals alone,  
cannot “see” lexical information.

Directions

• Need to make nonterminals more informative to
make PCFG rules sensitive to more context.

• Several approaches discussed today:
‣ Johnson 98: Parent annotations

‣ Collins 97: Lexicalized PCFGs

‣ Klein & Manning 03: Unlexicalized PCFGs with 
nonterminals split by hand

‣ Petrov & Klein 06: Unlexicalized PCFGs with 
automatically learned nonterminal splits

Johnson 1998

• Discusses PTB preprocessing and impact  
of PTB representation changes.

• One key idea: parent annotations.
‣ If parent of NP makes such a difference in how it should be

expanded, why don’t we encode the parent of the NP?

‣ Replace nonterminal NP by NP^S (NP as child of S), 
NP^VP (NP as child of VP), and so on in PTB trees.

‣ Train grammar on modified treebank.  
After parsing, remove annotations and compare to gold
standard tree.

Johnson

Example
Computational Linguistics Volume 24, Number 4

(a) VP (b) VP ̂ S

V NP V NPAVP

NP PP NP^NP PP^NP

Det N P NP Det N P NP^PP

Det N Det N

Figure 2
Trees before and after "parent annotation." Note that while the PCFG induced from tree (a)
can generate Chomsky adjunction structures because it contains the production NP--~NP PP,
the PCFG induced from tree (b) can only generate two-level NPs.

4. A Theoretical Investigation of Alternative Tree Structures

We can gain some theoretical insight into the effect that different tree representations
have on PCFG language models by considering several artifical corpora whose esti-
mated PCFGs are simple enough to study analytically. PP attachment was chosen for
investigation here because the alternative structures are simple and clear, but presum-
ably the same points could be made for any construction that has several alternative
tree representations. Correctly resolving PP attachment ambiguities requires informa-
tion, such as lexical information (Hindle and Rooth 1993), that is simply not available
to the PCFG models considered here. Still, one might hope that a PCFG model might be
able to accurately reflect general statistical trends concerning attachment preferences
in the training data, even if it lacks the information to correctly resolve individual
cases. But as the analysis in this section makes clear, even this is not always obtained.

For example, suppose our corpora only contain two trees, both of which have
yields V Det N P Det N, are always analyzed as a VP with a direct object NP and
a PP, and differ only as to whether the PP modifies the NP or the VP. The corpora
differ as to how these modifications are represented as trees. The dependencies in
these corpora (specifically, the fact that the PP is either attached to the NP or to the
VP) violate the independence assumptions implicit in a PCFG model, so one should
not expect a PCFG model to exactly reproduce any of these corpora. As a CL reviewer
points out, the results presented here depend on the assumption that there is exactly
one PP. Nevertheless, the analysis of these corpora highlights two important points:

• the choice of tree representation can have a noticable effect on the
performance of a PCFG language model, and

• the accuracy of a PCFG model can depend not just on the trees being
modeled, but on their frequency.

4.1 The Penn II Representations
Suppose we train a PCFG on a corpus ~1 consisting only of two different tree structures:
the NP attachment structure labeled (A1) and the VP attachment tree labeled (B0
depicted in Figure 3. These trees are called the "Penn II" tree representations here
because these are the representations used to encode PP modification in version II
of the WSJ corpus constructed at the University of Pennsylvania. Suppose that (A0

618

Computational Linguistics Volume 24, Number 4

(a) VP (b) VP ̂ S

V NP V NPAVP

NP PP NP^NP PP^NP

Det N P NP Det N P NP^PP

Det N Det N

Figure 2
Trees before and after "parent annotation." Note that while the PCFG induced from tree (a)
can generate Chomsky adjunction structures because it contains the production NP--~NP PP,
the PCFG induced from tree (b) can only generate two-level NPs.

4. A Theoretical Investigation of Alternative Tree Structures

We can gain some theoretical insight into the effect that different tree representations
have on PCFG language models by considering several artifical corpora whose esti-
mated PCFGs are simple enough to study analytically. PP attachment was chosen for
investigation here because the alternative structures are simple and clear, but presum-
ably the same points could be made for any construction that has several alternative
tree representations. Correctly resolving PP attachment ambiguities requires informa-
tion, such as lexical information (Hindle and Rooth 1993), that is simply not available
to the PCFG models considered here. Still, one might hope that a PCFG model might be
able to accurately reflect general statistical trends concerning attachment preferences
in the training data, even if it lacks the information to correctly resolve individual
cases. But as the analysis in this section makes clear, even this is not always obtained.

For example, suppose our corpora only contain two trees, both of which have
yields V Det N P Det N, are always analyzed as a VP with a direct object NP and
a PP, and differ only as to whether the PP modifies the NP or the VP. The corpora
differ as to how these modifications are represented as trees. The dependencies in
these corpora (specifically, the fact that the PP is either attached to the NP or to the
VP) violate the independence assumptions implicit in a PCFG model, so one should
not expect a PCFG model to exactly reproduce any of these corpora. As a CL reviewer
points out, the results presented here depend on the assumption that there is exactly
one PP. Nevertheless, the analysis of these corpora highlights two important points:

• the choice of tree representation can have a noticable effect on the
performance of a PCFG language model, and

• the accuracy of a PCFG model can depend not just on the trees being
modeled, but on their frequency.

4.1 The Penn II Representations
Suppose we train a PCFG on a corpus ~1 consisting only of two different tree structures:
the NP attachment structure labeled (A1) and the VP attachment tree labeled (B0
depicted in Figure 3. These trees are called the "Penn II" tree representations here
because these are the representations used to encode PP modification in version II
of the WSJ corpus constructed at the University of Pennsylvania. Suppose that (A0

618

Result: Labeled f-score on Section 22 jumps from 71.5 to 79.6.
Number of production rules grows from 15,000 to 22,000.

Lexicalized parsing

• Fundamental idea: If words are so important 
to distribution of rules, let’s put them in the rules.

• Step 1: Mark each node in PTB with its lexical head.
‣ identify head automatically using hand-written rules

Collins

(a) S

NP

DT

the

NN

lawyer

VP

Vt

questioned

NP

DT

the

NN

witness

(b)

S(questioned)

NP(lawyer)

DT(the)

the

NN(lawyer)

lawyer

VP(questioned)

Vt(questioned)

questioned

NP(witness)

DT(the)

the

NN(witness)

witness

Figure 5: (a) A conventional parse tree as found for example in the Penn treebank.
(b) A lexicalized parse tree for the same sentence. Note that each non-terminal in
the tree now includes a single lexical item. For clarity we mark the head of each
rule with an overline: for example for the rule NP → DT NN the child NN is the
head, and hence the NN symbol is marked as NN.

9

(a) S

NP

DT

the

NN

lawyer

VP

Vt

questioned

NP

DT

the

NN

witness

(b)

S(questioned)

NP(lawyer)

DT(the)

the

NN(lawyer)

lawyer

VP(questioned)

Vt(questioned)

questioned

NP(witness)

DT(the)

the

NN(witness)

witness

Figure 5: (a) A conventional parse tree as found for example in the Penn treebank.
(b) A lexicalized parse tree for the same sentence. Note that each non-terminal in
the tree now includes a single lexical item. For clarity we mark the head of each
rule with an overline: for example for the rule NP → DT NN the child NN is the
head, and hence the NN symbol is marked as NN.

9

Lexicalized PCFGs

• Step 2: Read off lexicalized PCFG from treebank.
‣ rules of the form S(examined) →2 NP(lawyer) VP(examined)

‣ “2” on arrow indicates that second child is head

• MLE and Viterbi-CKY adapt easily to new setting.  
So we’re basically done!

• But! Number of rules multiplied by Vr  
(V = vocabulary size, r = rank of rules).
‣ ordinary rule × head word × heads of other children

‣ increases number of parameters accordingly

‣ astronomical sparse data problem

Dealing with sparse data

VP

• Horizontal Markovization:
‣ break rules up into parts by generating children one by one

‣ independence assumptions: child depends on limited context

V NP PP PP

generate head: 
PH(V | VP)

generate sibling: 
PR(NP | VP, V)

generate sibling: 
PR(PP | VP, V, NP)

generate sibling: 
PR(PP | VP, V, PP)

Dealing with sparse data

• This helps a lot, but is still not enough for rare events.

• Need aggressive smoothing. Collins uses interpolation:
‣ p1 = C(S → NP VP, H = examined) / C(S, H = examined)

‣ p0 = C(S → NP VP) / C(S)

‣ P(S → NP VP | S, examined) = λ p1 + (1-λ) p0

‣ estimate λ from data

Collins 1997 (with more complex lexicalization model): 
f-score 87.7 on PTB word strings of length ≤ 40

Parsing speed

• Parsing slower than usual, because
‣ grammar is much bigger

‣ must be careful in managing head words

• Key insight: head word of (A,i,k) must be one of  
wi, …, wk-1; use pointers into input string.
‣ this gives O(n5) parsing time with acceptable memory use

‣ Eisner & Satta 99: can do it in O(n4) with clever algorithm 
— still too slow in practice

‣ use beam search to maintain only best hypotheses for 
each chart cell

Unlexicalized parsing

• Is lexicalization really as helpful as it seems?
‣ Gildea 01: what counts is effect of head word on choice of

subcategorization frame, not bilexical dependencies

‣ Dubey & Keller 03: bilexical dependencies not useful 
when parsing German

‣ Even lexicalized parsers (e.g. Collins 99, Charniak 00) 
make use of non-lexical splits of nonterminals.

• Klein & Manning 03: Perhaps usefulness of lexicalization
is primarily in giving us more nonterminals?  
Can we get the same effect more cheaply?

Klein Manning

Markovization

VP

<VP:[VBZ]. . . PP>

<VP:[VBZ]. . . NP>

<VP:[VBZ]>

VBZ

NP

PP

Figure 1: The v=1, h=1 markovization of VP → VBZ NP PP.

2 Vertical and Horizontal Markovization

The traditional starting point for unlexicalized pars-
ing is the raw n-ary treebank grammar read from
training trees (after removing functional tags and
null elements). This basic grammar is imperfect in
two well-known ways. First, the category symbols
are too coarse to adequately render the expansions
independent of the contexts. For example, subject
NP expansions are very different from object NP ex-
pansions: a subject NP is 8.7 times more likely than
an object NP to expand as just a pronoun. Having
separate symbols for subject and object NPs allows
this variation to be captured and used to improve
parse scoring. One way of capturing this kind of
external context is to use parent annotation, as pre-
sented in Johnson (1998). For example, NPs with S
parents (like subjects) will be marked NPˆS, while
NPs with VP parents (like objects) will be NPˆVP.
The second basic deficiency is that many rule

types have been seen only once (and therefore have
their probabilities overestimated), and many rules
which occur in test sentences will never have been
seen in training (and therefore have their probabili-
ties underestimated – see Collins (1999) for analy-
sis). Note that in parsing with the unsplit grammar,
not having seen a rule doesn’t mean one gets a parse
failure, but rather a possibly very weird parse (Char-
niak, 1996). One successful method of combating
sparsity is to markovize the rules (Collins, 1999). In
particular, we follow that work in markovizing out
from the head child, despite the grammar being un-
lexicalized, because this seems the best way to cap-
ture the traditional linguistic insight that phrases are
organized around a head (Radford, 1988).
Both parent annotation (adding context) and RHS

markovization (removing it) can be seen as two in-
stances of the same idea. In parsing, every node has
a vertical history, including the node itself, parent,
grandparent, and so on. A reasonable assumption is
that only the past v vertical ancestors matter to the
current expansion. Similarly, only the previous h
horizontal ancestors matter (we assume that the head

Horizontal Markov Order
Vertical Order h = 0 h = 1 h ≤ 2 h = 2 h = ∞

v = 1 No annotation 71.27 72.5 73.46 72.96 72.62
(854) (3119) (3863) (6207) (9657)

v ≤ 2 Sel. Parents 74.75 77.42 77.77 77.50 76.91
(2285) (6564) (7619) (11398) (14247)

v = 2 All Parents 74.68 77.42 77.81 77.50 76.81
(2984) (7312) (8367) (12132) (14666)

v ≤ 3 Sel. GParents 76.50 78.59 79.07 78.97 78.54
(4943) (12374) (13627) (19545) (20123)

v = 3 All GParents 76.74 79.18 79.74 79.07 78.72
(7797) (15740) (16994) (22886) (22002)

Figure 2: Markovizations: F1 and grammar size.

child always matters). It is a historical accident that
the default notion of a treebank PCFG grammar takes
v = 1 (only the current node matters vertically) and
h = ∞ (rule right hand sides do not decompose at
all). On this view, it is unsurprising that increasing
v and decreasing h have historically helped.
As an example, consider the case of v = 1,

h = 1. If we start with the rule VP → VBZ NP
PP PP, it will be broken into several stages, each a
binary or unary rule, which conceptually represent
a head-outward generation of the right hand size, as
shown in figure 1. The bottom layer will be a unary
over the head declaring the goal: ⟨VP: [VBZ]⟩ →

VBZ. The square brackets indicate that the VBZ is
the head, while the angle brackets ⟨X⟩ indicates that
the symbol ⟨X⟩ is an intermediate symbol (equiv-
alently, an active or incomplete state). The next
layer up will generate the first rightward sibling of
the head child: ⟨VP: [VBZ]. . . NP⟩ → ⟨VP: [VBZ]⟩
NP. Next, the PP is generated: ⟨VP: [VBZ]. . . PP⟩ →

⟨VP: [VBZ]. . . NP⟩ PP. Wewould then branch off left
siblings if there were any.7 Finally, we have another
unary to finish the VP. Note that while it is con-
venient to think of this as a head-outward process,
these are just PCFG rewrites, and so the actual scores
attached to each rule will correspond to a downward
generation order.
Figure 2 presents a grid of horizontal and verti-

cal markovizations of the grammar. The raw tree-
bank grammar corresponds to v = 1, h = ∞ (the
upper right corner), while the parent annotation in
(Johnson, 1998) corresponds to v = 2, h = ∞, and
the second-order model in Collins (1999), is broadly
a smoothed version of v = 2, h = 2. In addi-
tion to exact nth-order models, we tried variable-

7In our system, the last few right children carry over as pre-
ceding context for the left children, distinct from common prac-
tice. We found this wrapped horizon to be beneficial, and it
also unifies the infinite order model with the unmarkovized raw
rules.

VP

<VP:[VBZ]. . . PP>

<VP:[VBZ]. . . NP>

<VP:[VBZ]>

VBZ

NP

PP

Figure 1: The v=1, h=1 markovization of VP → VBZ NP PP.

2 Vertical and Horizontal Markovization

The traditional starting point for unlexicalized pars-
ing is the raw n-ary treebank grammar read from
training trees (after removing functional tags and
null elements). This basic grammar is imperfect in
two well-known ways. First, the category symbols
are too coarse to adequately render the expansions
independent of the contexts. For example, subject
NP expansions are very different from object NP ex-
pansions: a subject NP is 8.7 times more likely than
an object NP to expand as just a pronoun. Having
separate symbols for subject and object NPs allows
this variation to be captured and used to improve
parse scoring. One way of capturing this kind of
external context is to use parent annotation, as pre-
sented in Johnson (1998). For example, NPs with S
parents (like subjects) will be marked NPˆS, while
NPs with VP parents (like objects) will be NPˆVP.
The second basic deficiency is that many rule

types have been seen only once (and therefore have
their probabilities overestimated), and many rules
which occur in test sentences will never have been
seen in training (and therefore have their probabili-
ties underestimated – see Collins (1999) for analy-
sis). Note that in parsing with the unsplit grammar,
not having seen a rule doesn’t mean one gets a parse
failure, but rather a possibly very weird parse (Char-
niak, 1996). One successful method of combating
sparsity is to markovize the rules (Collins, 1999). In
particular, we follow that work in markovizing out
from the head child, despite the grammar being un-
lexicalized, because this seems the best way to cap-
ture the traditional linguistic insight that phrases are
organized around a head (Radford, 1988).
Both parent annotation (adding context) and RHS

markovization (removing it) can be seen as two in-
stances of the same idea. In parsing, every node has
a vertical history, including the node itself, parent,
grandparent, and so on. A reasonable assumption is
that only the past v vertical ancestors matter to the
current expansion. Similarly, only the previous h
horizontal ancestors matter (we assume that the head

Horizontal Markov Order
Vertical Order h = 0 h = 1 h ≤ 2 h = 2 h = ∞

v = 1 No annotation 71.27 72.5 73.46 72.96 72.62
(854) (3119) (3863) (6207) (9657)

v ≤ 2 Sel. Parents 74.75 77.42 77.77 77.50 76.91
(2285) (6564) (7619) (11398) (14247)

v = 2 All Parents 74.68 77.42 77.81 77.50 76.81
(2984) (7312) (8367) (12132) (14666)

v ≤ 3 Sel. GParents 76.50 78.59 79.07 78.97 78.54
(4943) (12374) (13627) (19545) (20123)

v = 3 All GParents 76.74 79.18 79.74 79.07 78.72
(7797) (15740) (16994) (22886) (22002)

Figure 2: Markovizations: F1 and grammar size.

child always matters). It is a historical accident that
the default notion of a treebank PCFG grammar takes
v = 1 (only the current node matters vertically) and
h = ∞ (rule right hand sides do not decompose at
all). On this view, it is unsurprising that increasing
v and decreasing h have historically helped.
As an example, consider the case of v = 1,

h = 1. If we start with the rule VP → VBZ NP
PP PP, it will be broken into several stages, each a
binary or unary rule, which conceptually represent
a head-outward generation of the right hand size, as
shown in figure 1. The bottom layer will be a unary
over the head declaring the goal: ⟨VP: [VBZ]⟩ →

VBZ. The square brackets indicate that the VBZ is
the head, while the angle brackets ⟨X⟩ indicates that
the symbol ⟨X⟩ is an intermediate symbol (equiv-
alently, an active or incomplete state). The next
layer up will generate the first rightward sibling of
the head child: ⟨VP: [VBZ]. . . NP⟩ → ⟨VP: [VBZ]⟩
NP. Next, the PP is generated: ⟨VP: [VBZ]. . . PP⟩ →

⟨VP: [VBZ]. . . NP⟩ PP. Wewould then branch off left
siblings if there were any.7 Finally, we have another
unary to finish the VP. Note that while it is con-
venient to think of this as a head-outward process,
these are just PCFG rewrites, and so the actual scores
attached to each rule will correspond to a downward
generation order.
Figure 2 presents a grid of horizontal and verti-

cal markovizations of the grammar. The raw tree-
bank grammar corresponds to v = 1, h = ∞ (the
upper right corner), while the parent annotation in
(Johnson, 1998) corresponds to v = 2, h = ∞, and
the second-order model in Collins (1999), is broadly
a smoothed version of v = 2, h = 2. In addi-
tion to exact nth-order models, we tried variable-

7In our system, the last few right children carry over as pre-
ceding context for the left children, distinct from common prac-
tice. We found this wrapped horizon to be beneficial, and it
also unifies the infinite order model with the unmarkovized raw
rules.

VP

VBZ NP PP

horizontal Markov 
h = 1

Vertical Markovization:  
v = 2 is parent annotations 
v = 3 grandparent, etc.

Rule-based state splitting
ROOT

SˆROOT

“

“

NPˆS

DT

This

VPˆS

VBZ

is

VPˆVP

VB

panic

NPˆVP

NN

buying

.

!

”

”

ROOT

SˆROOT

“

“

NPˆS

DT

This

VPˆS-VBF

VBZ

is

NPˆVP

NN

panic

NN

buying

.

!

”

”

(a) (b)

Figure 7: An error resolved with the SPLIT-VP annotation: (a)
the incorrect baseline parse and (b) the correct SPLIT-VP parse.

same way as all other PPs (usually as IN NP), but
they do tend to have different prepositions below IN.
A second kind of information in the original

trees is the presence of empty elements. Following
Collins (1999), the annotation GAPPED-S marks S
nodes which have an empty subject (i.e., raising and
control constructions). This brought F1 to 82.28%.

7 Head Annotation

The notion that the head word of a constituent can
affect its behavior is a useful one. However, often
the head tag is as good (or better) an indicator of how
a constituent will behave.12 We found several head
annotations to be particularly effective. First, pos-
sessive NPs have a very different distribution than
other NPs – in particular, NP → NP α rules are only
used in the treebank when the leftmost child is pos-
sessive (as opposed to other imaginable uses like for
New York lawyers, which is left flat). To address this,
POSS-NP marked all possessive NPs. This brought
the total F1 to 83.06%. Second, the VP symbol is
very overloaded in the Penn treebank, most severely
in that there is no distinction between finite and in-
finitival VPs. An example of the damage this con-
flation can do is given in figure 7, where one needs
to capture the fact that present-tense verbs do not
generally take bare infinitive VP complements. To
allow the finite/non-finite distinction, and other verb
type distinctions, SPLIT-VP annotated all VP nodes
with their head tag, merging all finite forms to a sin-
gle tag VBF. In particular, this also accomplished
Charniak’s gerund-VP marking. This was extremely
useful, bringing the cumulative F1 to 85.72%, 2.66%
absolute improvement (more than its solo improve-
ment over the baseline).
12This is part of the explanation of why (Charniak, 2000)

finds that early generation of head tags as in (Collins, 1999)
is so beneficial. The rest of the benefit is presumably in the
availability of the tags for smoothing purposes.

8 Distance

Error analysis at this point suggested that many re-
maining errors were attachment level and conjunc-
tion scope. While these kinds of errors are undoubt-
edly profitable targets for lexical preference, most
attachment mistakes were overly high attachments,
indicating that the overall right-branching tendency
of English was not being captured. Indeed, this ten-
dency is a difficult trend to capture in a PCFG be-
cause often the high and low attachments involve the
very same rules. Even if not, attachment height is
not modeled by a PCFG unless it is somehow ex-
plicitly encoded into category labels. More com-
plex parsing models have indirectly overcome this
by modeling distance (rather than height).
Linear distance is difficult to encode in a PCFG

– marking nodes with the size of their yields mas-
sively multiplies the state space.13 Therefore, we
wish to find indirect indicators that distinguish high
attachments from low ones. In the case of two PPs
following a NP, with the question of whether the
second PP is a second modifier of the leftmost NP
or should attach lower, inside the first PP, the im-
portant distinction is usually that the lower site is a
non-recursive base NP. Collins (1999) captures this
notion by introducing the notion of a base NP, in
which any NP which dominates only preterminals is
marked with a -B. Further, if an NP-B does not have
a non-base NP parent, it is given one with a unary
production. This was helpful, but substantially less
effective than marking base NPs without introducing
the unary, whose presence actually erased a useful
internal indicator – base NPs are more frequent in
subject position than object position, for example. In
isolation, the Collins method actually hurt the base-
line (absolute cost to F1 of 0.37%), while skipping
the unary insertion added an absolute 0.73% to the
baseline, and brought the cumulative F1 to 86.04%.
In the case of attachment of a PP to an NP ei-

ther above or inside a relative clause, the high NP
is distinct from the low one in that the already mod-
ified one contains a verb (and the low one may be
a base NP as well). This is a partial explanation of
the utility of verbal distance in Collins (1999). To

13The inability to encode distance naturally in a naive PCFG
is somewhat ironic. In the heart of any PCFG parser, the funda-
mental table entry or chart item is a label over a span, for ex-
ample an NP from position 0 to position 5. The concrete use of
a grammar rule is to take two adjacent span-marked labels and
combine them (for example NP[0,5] and VP[5,12] into S[0,12]).
Yet, only the labels are used to score the combination.

ROOT

SˆROOT

“

“

NPˆS

DT

This

VPˆS

VBZ

is

VPˆVP

VB

panic

NPˆVP

NN

buying

.

!

”

”

ROOT

SˆROOT

“

“

NPˆS

DT

This

VPˆS-VBF

VBZ

is

NPˆVP

NN

panic

NN

buying

.

!

”

”

(a) (b)

Figure 7: An error resolved with the SPLIT-VP annotation: (a)
the incorrect baseline parse and (b) the correct SPLIT-VP parse.

same way as all other PPs (usually as IN NP), but
they do tend to have different prepositions below IN.
A second kind of information in the original

trees is the presence of empty elements. Following
Collins (1999), the annotation GAPPED-S marks S
nodes which have an empty subject (i.e., raising and
control constructions). This brought F1 to 82.28%.

7 Head Annotation

The notion that the head word of a constituent can
affect its behavior is a useful one. However, often
the head tag is as good (or better) an indicator of how
a constituent will behave.12 We found several head
annotations to be particularly effective. First, pos-
sessive NPs have a very different distribution than
other NPs – in particular, NP → NP α rules are only
used in the treebank when the leftmost child is pos-
sessive (as opposed to other imaginable uses like for
New York lawyers, which is left flat). To address this,
POSS-NP marked all possessive NPs. This brought
the total F1 to 83.06%. Second, the VP symbol is
very overloaded in the Penn treebank, most severely
in that there is no distinction between finite and in-
finitival VPs. An example of the damage this con-
flation can do is given in figure 7, where one needs
to capture the fact that present-tense verbs do not
generally take bare infinitive VP complements. To
allow the finite/non-finite distinction, and other verb
type distinctions, SPLIT-VP annotated all VP nodes
with their head tag, merging all finite forms to a sin-
gle tag VBF. In particular, this also accomplished
Charniak’s gerund-VP marking. This was extremely
useful, bringing the cumulative F1 to 85.72%, 2.66%
absolute improvement (more than its solo improve-
ment over the baseline).
12This is part of the explanation of why (Charniak, 2000)

finds that early generation of head tags as in (Collins, 1999)
is so beneficial. The rest of the benefit is presumably in the
availability of the tags for smoothing purposes.

8 Distance

Error analysis at this point suggested that many re-
maining errors were attachment level and conjunc-
tion scope. While these kinds of errors are undoubt-
edly profitable targets for lexical preference, most
attachment mistakes were overly high attachments,
indicating that the overall right-branching tendency
of English was not being captured. Indeed, this ten-
dency is a difficult trend to capture in a PCFG be-
cause often the high and low attachments involve the
very same rules. Even if not, attachment height is
not modeled by a PCFG unless it is somehow ex-
plicitly encoded into category labels. More com-
plex parsing models have indirectly overcome this
by modeling distance (rather than height).
Linear distance is difficult to encode in a PCFG

– marking nodes with the size of their yields mas-
sively multiplies the state space.13 Therefore, we
wish to find indirect indicators that distinguish high
attachments from low ones. In the case of two PPs
following a NP, with the question of whether the
second PP is a second modifier of the leftmost NP
or should attach lower, inside the first PP, the im-
portant distinction is usually that the lower site is a
non-recursive base NP. Collins (1999) captures this
notion by introducing the notion of a base NP, in
which any NP which dominates only preterminals is
marked with a -B. Further, if an NP-B does not have
a non-base NP parent, it is given one with a unary
production. This was helpful, but substantially less
effective than marking base NPs without introducing
the unary, whose presence actually erased a useful
internal indicator – base NPs are more frequent in
subject position than object position, for example. In
isolation, the Collins method actually hurt the base-
line (absolute cost to F1 of 0.37%), while skipping
the unary insertion added an absolute 0.73% to the
baseline, and brought the cumulative F1 to 86.04%.
In the case of attachment of a PP to an NP ei-

ther above or inside a relative clause, the high NP
is distinct from the low one in that the already mod-
ified one contains a verb (and the low one may be
a base NP as well). This is a partial explanation of
the utility of verbal distance in Collins (1999). To

13The inability to encode distance naturally in a naive PCFG
is somewhat ironic. In the heart of any PCFG parser, the funda-
mental table entry or chart item is a label over a span, for ex-
ample an NP from position 0 to position 5. The concrete use of
a grammar rule is to take two adjacent span-marked labels and
combine them (for example NP[0,5] and VP[5,12] into S[0,12]).
Yet, only the labels are used to score the combination.

Not just an VP^S, 
but one whose head is a finite verb.

VPˆS

VPˆVP

PPˆVP

NPˆPP

NNS

works

NN

advertising

IN

if

VB

see

TO

to

VPˆS

VPˆVP

PPˆVP

NPˆPP

NNS

works

NN

advertising

IN-if

if

VB

see

TO

to

•

•

•

•

his pyjamas

in

•

•

an elephant

shot

John

1

VPˆS

VPˆVP

PPˆVP

NPˆPP

NNS

works

NN

advertising

IN

if

VB

see

TO

to

VPˆS

VPˆVP

PPˆVP

NPˆPP

NNS

works

NN

advertising

IN-if

if

VB

see

TO

to

•

•

•

•

his pyjamas

in

•

•

an elephant

shot

John

1

Not just a preposition, 
but one that is like “if ”.

Results
Cumulative Indiv.

Annotation Size F1 ! F1 ! F1
Baseline (v ≤ 2, h ≤ 2) 7619 77.77 – –
UNARY-INTERNAL 8065 78.32 0.55 0.55
UNARY-DT 8066 78.48 0.71 0.17
UNARY-RB 8069 78.86 1.09 0.43
TAG-PA 8520 80.62 2.85 2.52
SPLIT-IN 8541 81.19 3.42 2.12
SPLIT-AUX 9034 81.66 3.89 0.57
SPLIT-CC 9190 81.69 3.92 0.12
SPLIT-% 9255 81.81 4.04 0.15
TMP-NP 9594 82.25 4.48 1.07
GAPPED-S 9741 82.28 4.51 0.17
POSS-NP 9820 83.06 5.29 0.28
SPLIT-VP 10499 85.72 7.95 1.36
BASE-NP 11660 86.04 8.27 0.73
DOMINATES-V 14097 86.91 9.14 1.42
RIGHT-REC-NP 15276 87.04 9.27 1.94

Figure 3: Size and devset performance of the cumulatively an-
notated models, starting with the markovized baseline. The
right two columns show the change in F1 from the baseline for
each annotation introduced, both cumulatively and for each sin-
gle annotation applied to the baseline in isolation.

history models similar in intent to those described
in Ron et al. (1994). For variable horizontal his-
tories, we did not split intermediate states below 10
occurrences of a symbol. For example, if the symbol
⟨VP: [VBZ]. . . PP PP⟩ were too rare, we would col-
lapse it to ⟨VP: [VBZ]. . . PP⟩. For vertical histories,
we used a cutoff which included both frequency and
mutual information between the history and the ex-
pansions (this was not appropriate for the horizontal
case because MI is unreliable at such low counts).
Figure 2 shows parsing accuracies as well as the

number of symbols in each markovization. These
symbol counts include all the intermediate states
which represent partially completed constituents.
The general trend is that, in the absence of further
annotation, more vertical annotation is better – even
exhaustive grandparent annotation. This is not true
for horizontal markovization, where the variable-
order second-order model was superior. The best
entry, v = 3, h ≤ 2, has an F1 of 79.74, already
a substantial improvement over the baseline.
In the remaining sections, we discuss other an-

notations which increasingly split the symbol space.
Since we expressly do not smooth the grammar, not
all splits are guaranteed to be beneficial, and not all
sets of useful splits are guaranteed to co-exist well.
In particular, while v = 3, h ≤ 2 markovization is
good on its own, it has a large number of states and
does not tolerate further splitting well. Therefore,
we base all further exploration on the v ≤ 2, h ≤ 2

ROOT

SˆROOT

NPˆS

NN

Revenue

VPˆS

VBD

was

NPˆVP

QP

$

$

CD

444.9

CD

million

,

,

SˆVP

VPˆS

VBG

including

NPˆVP

NPˆNP

JJ

net

NN

interest

,

,

CONJP

RB

down

RB

slightly

IN

from

NPˆNP

QP

$

$

CD

450.7

CD

million

.

.

Figure 4: An error which can be resolved with the UNARY-
INTERNAL annotation (incorrect baseline parse shown).

grammar. Although it does not necessarily jump out
of the grid at first glance, this point represents the
best compromise between a compact grammar and
useful markov histories.

3 External vs. Internal Annotation

The two major previous annotation strategies, par-
ent annotation and head lexicalization, can be seen
as instances of external and internal annotation, re-
spectively. Parent annotation lets us indicate an
important feature of the external environment of a
node which influences the internal expansion of that
node. On the other hand, lexicalization is a (radi-
cal) method of marking a distinctive aspect of the
otherwise hidden internal contents of a node which
influence the external distribution. Both kinds of an-
notation can be useful. To identify split states, we
add suffixes of the form -X to mark internal content
features, and ˆX to mark external features.
To illustrate the difference, consider unary pro-

ductions. In the raw grammar, there are many unar-
ies, and once any major category is constructed over
a span, most others become constructible as well us-
ing unary chains (see Klein and Manning (2001) for
discussion). Such chains are rare in real treebank
trees: unary rewrites only appear in very specific
contexts, for example S complements of verbs where
the S has an empty, controlled subject. Figure 4
shows an erroneous output of the parser, using the
baseline markovized grammar. Intuitively, there are
several reasons this parse should be ruled out, but
one is that the lower S slot, which is intended pri-
marily for S complements of communication verbs,
is not a unary rewrite position (such complements
usually have subjects). It would therefore be natural
to annotate the trees so as to confine unary produc-
tions to the contexts in which they are actually ap-
propriate. We tried two annotations. First, UNARY-

Compare against f-score 87-89 of lexicalized parsers. 
But much smaller grammars, simpler and faster parsing!

State splitting

• Can see all of these approaches as methods for
refining the nonterminals of the PTB. 

• Petrov et al. 06: Can we automatically learn how to
refine (“split”) the nonterminals?

read off 
directly

lexicalizedparent 
annotations

rule-based 
state splitting

Petrov

Split-Merge

S

VP

NP

NNS

cookies

VBD

ate

NP

NNP

John

S-1? S-2?

VP-1? VP-2?

NP-1? NP-2?

NNS-1? NNS-2?

cookies

VBD-1? VBD-2?

ate

NP-1? NP-2?

NNP-1? NNP-2?

John

VPˆS

VPˆVP

PPˆVP

NPˆPP

NNS

works

NN

advertising

IN

if

VB

see

TO

to

1

S

VP

NP

NNS

cookies

VBD

ate

NP

NNP

John

S-1? S-2?

VP-1? VP-2?

NP-1? NP-2?

NNS-1? NNS-2?

cookies

VBD-1? VBD-2?

ate

NP-1? NP-2?

NNP-1? NNP-2?

John

VPˆS

VPˆVP

PPˆVP

NPˆPP

NNS

works

NN

advertising

IN

if

VB

see

TO

to

1

original annotation possible trees with state-split nonterminals

S-1 → NP-1 VP-1 
S-1 → NP-1 VP-2
S-1 → NP-2 VP-1 etc.

grammar with state-split NTs

learn weights using EM

+ “merge”: undo useless splits

Results

ers), and so on. This same propagation occurs even
more frequently in the intermediate symbols, with, for
example, one subsymbol of NP symbol specializing in
propagating proper noun sequences.
Verb phrases, unsurprisingly, also receive a full set

of subsymbols, including categories for infinitive VPs,
passive VPs, several for intransitive VPs, several for
transitive VPs with NP and PP objects, and one for
sentential complements. As an example of how lexi-
cal splits can interact with phrasal splits, the two most
frequent rewrites involving intransitive past tense verbs
(VBD) involve two different VPs and VBDs: VP-14�
VBD-13 and VP-15� VBD-12. The difference is that
VP-14s are main clause VPs, while VP-15s are sub-
ordinate clause VPs. Correspondingly, VBD-13s are
verbs of communication (said, reported), while VBD-
12s are an assortment of verbs which often appear in
subordinate contexts (did, began).
Other interesting phenomena also emerge. For ex-

ample, intermediate symbols, which in previous work
were very heavily, manually split using a Markov pro-
cess, end up encoding processes which are largely
Markov, but more complex. For example, some classes
of adverb phrases (those with RB-4 as their head) are
‘forgotten’ by the VP intermediate grammar. The rele-
vant rule is the very probable VP-2� VP-2 ADVP-6;
adding this ADVP to a growing VP does not change the
VP subsymbol. In essense, at least a partial distinction
between verbal arguments and verbal adjucts has been
learned (as exploited in Collins (1999), for example).

4 Conclusions

By using a split-and-merge strategy and beginningwith
the barest possible initial structure, our method reli-
ably learns a PCFG that is remarkably good at pars-
ing. Hierarchical split/merge training enables us to
learn compact but accurate grammars, ranging from ex-
tremely compact (an F1 of 78% with only 147 sym-
bols) to extremely accurate (an F1 of 90.2% for our
largest grammar with only 1043 symbols). Splitting
provides a tight fit to the training data, while merging
improves generalization and controls grammar size. In
order to overcome data fragmentation and overfitting,
we smooth our parameters. Smoothing allows us to
add a larger number of annotations, each specializing
in only a fraction of the data, without overfitting our
training set. As one can see in Table 4, the resulting
parser ranks among the best lexicalized parsers, beat-
ing those of Collins (1999) and Charniak and Johnson
(2005).8 Its F1 performance is a 27% reduction in er-
ror over Matsuzaki et al. (2005) and Klein and Man-
ning (2003). Not only is our parser more accurate, but
the learned grammar is also significantly smaller than
that of previous work. While this all is accomplished
with only automatic learning, the resulting grammar is

8Even with the Viterbi parser our best grammar achieves
88.7/88.9 LP/LR.

� 40 words LP LR CB 0CB
Klein and Manning (2003) 86.9 85.7 1.10 60.3
Matsuzaki et al. (2005) 86.6 86.7 1.19 61.1

Collins (1999) 88.7 88.5 0.92 66.7
Charniak and Johnson (2005) 90.1 90.1 0.74 70.1

This Paper 90.3 90.0 0.78 68.5
all sentences LP LR CB 0CB

Klein and Manning (2003) 86.3 85.1 1.31 57.2
Matsuzaki et al. (2005) 86.1 86.0 1.39 58.3

Collins (1999) 88.3 88.1 1.06 64.0
Charniak and Johnson (2005) 89.5 89.6 0.88 67.6

This Paper 89.8 89.6 0.92 66.3

Table 4: Comparison of our results with those of others.

human-interpretable. It shows most of the manually in-
troduced annotations discussed by Klein and Manning
(2003), but also learns other linguistic phenomena.

References
G. Ball and D. Hall. 1967. A clustering technique for sum-
marizing multivariate data. Behavioral Science.

S. Caraballo and E. Charniak. 1998. New figures of merit
for best–first probabilistic chart parsing. InComputational
Lingusitics, p. 275–298.

E. Charniak and M. Johnson. 2005. Coarse-to-fine n-best
parsing and maxent discriminative reranking. In ACL’05,
p. 173–180.

E. Charniak. 1996. Tree-bank grammars. In AAAI ’96, p.
1031–1036.

E. Charniak. 2000. A maximum–entropy–inspired parser. In
NAACL ’00, p. 132–139.

D. Chiang and D. Bikel. 2002. Recovering latent information
in treebanks. In Computational Linguistics.

N. Chomsky. 1965. Aspects of the Theory of Syntax. MIT
Press.

M. Collins. 1999. Head-Driven Statistical Models for Natu-
ral Language Parsing. Ph.D. thesis, U. of Pennsylvania.

J. Goodman. 1996. Parsing algorithms and metrics. In ACL
’96, p. 177–183.

J. Henderson. 2004. Discriminative training of a neural net-
work statistical parser. In ACL ’04.

M. Johnson. 1998. PCFG models of linguistic tree represen-
tations. Computational Linguistics, 24:613–632.

D. Klein and C. Manning. 2003. Accurate unlexicalized
parsing. ACL ’03, p. 423–430.

T. Matsuzaki, Y. Miyao, and J. Tsujii. 2005. Probabilistic
CFG with latent annotations. In ACL ’05, p. 75–82.

F. Pereira and Y. Schabes. 1992. Inside-outside reestimation
from partially bracketed corpora. In ACL ’92, p. 128–135.

D. Prescher. 2005. Inducing head-driven PCFGs with la-
tent heads: Refining a tree-bank grammar for parsing. In
ECML’05.

H. Schuetze. 1998. Automatic word sense discrimination.
Computational Linguistics, 24(1):97–124.

S. Sekine and M. J. Collins. 1997. EVALB bracket scoring
program. http://nlp.cs.nyu.edu/evalb/.

K. Sima’an. 1992. Computatoinal complexity of probabilis-
tic disambiguation. Grammars, 5:125–151.

A. Stolcke and S. Omohundro. 1994. Inducing probabilistic
grammars by bayesian model merging. In Grammatical
Inference and Applications, p. 106–118.

440

(“this paper” = Petrov et al. 06)

Some state-split POS tags
VBZ

VBZ-0 gives sells takes
VBZ-1 comes goes works
VBZ-2 includes owns is
VBZ-3 puts provides takes
VBZ-4 says adds Says
VBZ-5 believes means thinks
VBZ-6 expects makes calls
VBZ-7 plans expects wants
VBZ-8 is ’s gets
VBZ-9 ’s is remains
VBZ-10 has ’s is
VBZ-11 does Is Does

NNP
NNP-0 Jr. Goldman INC.
NNP-1 Bush Noriega Peters
NNP-2 J. E. L.
NNP-3 York Francisco Street
NNP-4 Inc Exchange Co
NNP-5 Inc. Corp. Co.
NNP-6 Stock Exchange York
NNP-7 Corp. Inc. Group
NNP-8 Congress Japan IBM
NNP-9 Friday September August
NNP-10 Shearson D. Ford
NNP-11 U.S. Treasury Senate
NNP-12 John Robert James
NNP-13 Mr. Ms. President
NNP-14 Oct. Nov. Sept.
NNP-15 New San Wall

JJS
JJS-0 largest latest biggest
JJS-1 least best worst
JJS-2 most Most least

DT
DT-0 the The a
DT-1 A An Another
DT-2 The No This
DT-3 The Some These
DT-4 all those some
DT-5 some these both
DT-6 That This each
DT-7 this that each
DT-8 the The a
DT-9 no any some
DT-10 an a the
DT-11 a this the

CD
CD-0 1 50 100
CD-1 8.50 15 1.2
CD-2 8 10 20
CD-3 1 30 31
CD-4 1989 1990 1988
CD-5 1988 1987 1990
CD-6 two three five
CD-7 one One Three
CD-8 12 34 14
CD-9 78 58 34
CD-10 one two three
CD-11 million billion trillion

PRP
PRP-0 It He I
PRP-1 it he they
PRP-2 it them him

RBR
RBR-0 further lower higher
RBR-1 more less More
RBR-2 earlier Earlier later

IN
IN-0 In With After
IN-1 In For At
IN-2 in for on
IN-3 of for on
IN-4 from on with
IN-5 at for by
IN-6 by in with
IN-7 for with on
IN-8 If While As
IN-9 because if while
IN-10 whether if That
IN-11 that like whether
IN-12 about over between
IN-13 as de Up
IN-14 than ago until
IN-15 out up down

RB
RB-0 recently previously still
RB-1 here back now
RB-2 very highly relatively
RB-3 so too as
RB-4 also now still
RB-5 however Now However
RB-6 much far enough
RB-7 even well then
RB-8 as about nearly
RB-9 only just almost
RB-10 ago earlier later
RB-11 rather instead because
RB-12 back close ahead
RB-13 up down off
RB-14 not Not maybe
RB-15 n’t not also

Table 1: The most frequent three words in the subcategories of several part-of-speech tags.

fore relatively straightforward to review the broad be-
havior of a grammar. In this section, we review a
randomly-selected grammar after 4 SM cycles that pro-
duced an F1 score on the development set of 89.11. We
feel it is reasonable to present only a single grammar
because all the grammars are very similar. For exam-
ple, after 4 SM cycles, the F1 scores of the 4 trained
grammars have a variance of only 0.024, which is tiny
compared to the deviation of 0.43 obtained by Mat-
suzaki et al. (2005)). Furthermore, these grammars
allocate splits to nonterminals with a variance of only
0.32, so they agree to within a single latent state.

3.1 Lexical Splits
One of the original motivations for lexicalization of
parsers is the fact that part-of-speech (POS) tags are
usually far too general to encapsulate a word’s syntac-
tic behavior. In the limit, each word may well have
its own unique syntactic behavior, especially when, as
in modern parsers, semantic selectional preferences are
lumped in with traditional syntactic trends. However,
in practice, and given limited data, the relationship be-
tween specific words and their syntactic contexts may
be best modeled at a level more fine than POS tag but
less fine than lexical identity.
In our model, POS tags are split just like any other

grammar symbol: the subsymbols for several tags are
shown in Table 1, along with their most frequent mem-
bers. In most cases, the categories are recognizable as
either classic subcategories or an interpretable division
of some other kind.

Nominal categories are the most heavily split (see
Table 2), and have the splits which are most semantic
in nature (though not without syntactic correlations).
For example, plural common nouns (NNS) divide into
the maximum number of categories (16). One cate-
gory consists primarily of dates, whose typical parent
is an NP subsymbol whose typical parent is a root S,
essentially modeling the temporal noun annotation dis-
cussed in Klein and Manning (2003). Another cate-
gory specializes in capitalized words, preferring as a
parent an NP with an S parent (i.e. subject position).
A third category specializes in monetary units, and
so on. These kinds of syntactico-semantic categories
are typical, and, given distributional clustering results
like those of Schuetze (1998), unsurprising. The sin-
gular nouns are broadly similar, if slightly more ho-
mogenous, being dominated by categories for stocks
and trading. The proper noun category (NNP, shown)
also splits into the maximum 16 categories, including
months, countries, variants of Co. and Inc., first names,
last names, initials, and so on.

Verbal categories are also heavily split. Verbal sub-
categories sometimes reflect syntactic selectional pref-
erences, sometimes reflect semantic selectional prefer-
ences, and sometimes reflect other aspects of verbal
syntax. For example, the present tense third person
verb subsymbols (VBZ) are shown. The auxiliaries get
three clear categories: do, have, and be (this pattern
repeats in other tenses), as well a fourth category for
the ambiguous ’s. Verbs of communication (says) and

438

Summary

• PCFGs that we read off of treebank suffer from  
overly strong independence assumptions.

• Improve parser accuracy by encoding context in  
nonterminal vocabulary.
‣ parent annotations

‣ lexicalization

‣ rule-based and automatically computed state splitting

• Berkeley parser: f-score around 90.

Parsing Schemata

• Parsing algorithm derives claims about the string.  
Record such claims in parse items.

• At each step, apply a parsing rule to infer new parse
items from earlier ones.

• If there is a way to derive a goal item from the start
item(s) for a given input string, then claim that this
string is in the language.

Shieber

Schema for shift-reduce

• Items are of the form (s,w’) where w’ is a suffix of
the input string w, and s is the stack.
‣ Claim of this item: Underlying cfg allows the derivation 

s w’ ⇒* w

• Start item: (ε, w); goal item: (S, ε)

• Parsing rules:
(s, a ⋅ w’)

(s ⋅ a, w’)
(shift)

(s ⋅ s’, w’) A → s’ in P

(s ⋅ A, w’)
(reduce)

Implementing schemas

• Can generally implement parser for given schema in
the following way:
‣ maintain an agenda: queue of items that we have discovered,

but not yet attempted to combine with other items

‣ maintain a chart of all seen items for the sentence

rules of parsing  
schema used here

initialize chart and agenda with all start items

while agenda not empty:
 item = dequeue(agenda)
 for each combination c of item with other item in the chart:
 if c not in chart:
 add c to chart
 enqueue c in agenda

if chart contains a goal item, claim w ∈ L(G)

Implementing schemas

• Can generally implement parser for given schema in
the following way:
‣ maintain an agenda: queue of items that we have discovered,

but not yet attempted to combine with other items

‣ maintain a chart of all seen items for the sentence

rules of parsing  
schema used here

initialize chart and agenda with all start items

while agenda not empty:
 item = dequeue(agenda)
 for each combination c of item with other item in the chart:
 if c not in chart:
 add c to chart
 enqueue c in agenda

if chart contains a goal item, claim w ∈ L(G)

essential to do  
this efficiently

The CKY Algorithm

Cell at column i, row k: 
{ A | A ⇒* wi … wk-1 }

k
=

3
4

5
8

i = 2 3 4 5

CKY computes claims  
about string

VP NP N PP

VP NP N

Det

V

shot

an

elephant

in my pyjamas

…
 el

ep
ha

nt

…
 an

…
 sh

ot

…
 in

 m
y

py
ja

m
as

Chart

CKY as parsing schema

• Makes claims about the string: Entering A into
Ch(i,k) means algorithm thinks A ⇒* wi … wk-1.

• Write this claim as item (A, i, k). This is like a logic
formula that is true iff A ⇒* wi … wk-1.

• Write parsing schema that shows how new items
can be derived from old items.
‣ very general view; applies to algorithms beyond CKY

‣ supports generalized implementations

Shieber

CKY as parsing schema

• Parsing schema for CKY has a single rule:

• One benefit: can literally read off parsing complexity.
‣ rules have at most three independent variables for string

positions (i, j, k)

‣ therefore complexity is O(n3)

A → B C (B, i, j) (C, j, k)
(A, i, k)

Example
agenda:

chart:

(V, 2, 3) (Det, 3, 4) (N, 4, 5)(PP, 5, 8)

V

Det

N

PP

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

(V, 2, 3) (Det, 3, 4) (N, 4, 5)(PP, 5, 8)

V

Det

N

PP

(N, 4, 8)

N

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

(V, 2, 3) (Det, 3, 4) (N, 4, 5)

V

Det

N

PP

(N, 4, 8)

N

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

(Det, 3, 4) (N, 4, 5)

V

Det

N

PP

(N, 4, 8)

N

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

(Det, 3, 4) (N, 4, 5)

V

Det

N

PP

(NP, 3, 5)

NP

(N, 4, 8)

N

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

(Det, 3, 4) (N, 4, 5)

V

Det

N

PP

(NP, 3, 5)

NP

(N, 4, 8)

N

(NP, 3, 8)

NP

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

(N, 4, 5)

V

Det

N

PP

(NP, 3, 5)

NP

(N, 4, 8)

N

(NP, 3, 8)

NP

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

V

Det

N

PP

(NP, 3, 5)

NP

(N, 4, 8)

N

(NP, 3, 8)

NP

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

V

Det

N

PP

(NP, 3, 5)

NP

N

(NP, 3, 8)

NP

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

V

Det

N

PP

(NP, 3, 5)

NP

N

(VP, 2, 5)

VP

(NP, 3, 8)

NP

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

V

Det

N

PP

NP

N

(VP, 2, 5)

VP

(NP, 3, 8)

NP

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

V

Det

N

PP

NP

N

(VP, 2, 5)

VP

(NP, 3, 8)

NP

(VP, 2, 8)

VP

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

V

Det

N

PP

NP

N

(VP, 2, 5)

VP

NP

(VP, 2, 8)

VP

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

V

Det

N

PP

NP

N

VP

NP

(VP, 2, 8)

VP

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

V

Det

N

PP

NP

N

VP

NPVP

…
3

…
4

…
5

…
8

2… 3… 4… 5…

