Training PCFGs

Computational Linguistics

Alexander Koller

30 November 2018

Probabilistic CFGs

S> NP VP
NP - Det N
NP > 1

N> N PP

N > elephant
N - pyjamas

1.0
0.8
0.2
0.4

0.3

[0.3]

VP > V NP
VP > VP PP
V - shot
PP > P NP
P - In
Det - an
Det > my

0.5
0.5
1.0
1.0
1.0
0.5
0.5

(let’s pretend for simplicity that Det = PRP$)

Parse trees

p = 0.00072 p = 0.00057
S
NP/ \VP
S 0.2 0.5 S
NP/ \'P | Dm

VP/ P 0.5 AA\
N PP
7N 7 % 03 N\

P P
P NP
: 0.8
Dm D{\N Dm
0.5] 0.3 | 0.5 10.3 105l 10.3
| shot an elephant in my pyjamas I shot an elephant in ~““my pyjamas

T

“correct” = more probable parse tree

Evaluation

e Step 1: Decide on training and test corpus.
For WS]J corpus, there is a conventional split by sections:

2-21 22

Training Devel Test

Evaluation

Step 2: How should we measure the accuracy of the
parser?

Straightforward idea: Measure “exact match’, i.e.
proportion of gold standard trees that parser got right.

This is too strict:
» parser makes many decisions in parsing a sentence
» a single incorrect parsing decision makes tree “wrong”

» want more fine-grained measure

Comparing parse trees

o Idea 2 (PARSEVAL): Compare structure of parse
tree and gold standard tree.

» Labeled: Which constituents (span + syntactic category) of
one tree also occur in the other?

» Unlabeled: How do the trees bracket the substrings of the
sentence (ignoring syntactic categories)?

Gold

/\VP

NP SB] AD]P

CC DT NN VBZ H

But the concept is worLable

Parse

S
I
< | R

/ NP NP-SB] | ADJP

IN DT NN VBZ Jj

But the concept is workable

Precision

What proportion of constituents in parse tree is also present in gold tree?

Gold SY Parse

/ 7 x [v
RN,

NP SBI AD]P / P-SB] | ADJP
4 | v |
CC DT NN VBZ II N pr’ nNYvBZ JpY
BLt t}le conl:ept is‘ WorLable BLt t}le con‘cept is‘ WorLable

Labeled Precision=7/11 = 63.6%
Unlabeled Precision=10/11 =90.9%

Recall

What proportion of constituents in gold tree is also present in parse tree?

Gold Sv

/\VP‘/

NP SBI AD]P

4
(C)C DT I{ VBZ H

But the concept is WorLable

Labeled Recall=7/9=77.8%

Unlabeled Recall =8 /9 = 88.9%

/

PP

\ |
/ NP NP-SB] | ADJP

\

IN DT NN VBZ Jj

But the concept is WorLable

F-Score

Precision and recall measure opposing qualities of
a parser (“soundness” and “completeness”)

Summarize both together in the f-score:

2.P-R
o —
" PLR

In the example, we have labeled f-score 70.0
and unlabeled f-score 89.9.

Today

e Parameters of PCFG = rule probabilities.

e How do we learn parameters from corpora?

» maximum likelihood estimation
» “hard EM” using Viterbi

» “soft EM” using the inside-outside algorithm

ML Estimation

Assume we have a treebank.

» that is, every sentence annotated by hand with its
“correct” parse tree

Then we can use MLE to obtain rule probabilities:

CA—w) CA—w)
C(A—e) > C(A—w)

P(A — w) =

Standard way of parameter estimation in practice.
Works well, smoothing only needed for unknown
words (or replace by POS tags).

Example

NP / \ NP/ \P

o~
e Vo
N N\

I shot an elepLant in my pyjamas I slept in my pyjamas

Z

Example

— \Vp NP/ \IP
T v e

o N b

/N

Det N Det N

shot an elepLant in my | pyjamas I slept in my | pyjamas

Example

S S
~
NP/ \\VP NP/ VP

VP~ PP /\PP
N P

/ \\ /\ \ N
N et

Det N Det N

I shot an elepLant in my | pyjamas I slept in my | pyjamas

D

Example

S S
NP/ \\VP NP/ \\VP
VP// \PP Ve~ /\PP
A Ve
D(\}\I D(\ N Dét [N
1 shot aln elepLant in nly pyjalmas 1 slept in nly pyjalmas
N > N PP 0] VP> TV NP [1/4]
N > elephant [1/3] VP >1V [1/4]

N - pyjamas [2/3] VP> VP PP [1/2]

Unsupervised estimation

e MLE works okay for English.

» German: Tiger treebank exists, but is hard for PCFGs,
e.g. because of free word order.

» most other languages: phrase structure annotations
unavailable, expensive to create > unsupervised methods?

e Unsupervised methods:

» provide CFG, learn parameters from unannotated corpus
» show first “hard EM”, then “soft EM”

» ideas instructive and generalize to other problems

“"Hard” aka Viterbi EM

e In the absence of syntactic annotations,
learner must invent its own parse trees.

e Viterbi EM:

» start with some parameter estimate

» produce “syntactic annotations” by computing best tree
for each sentence using Viterbi

» apply MLE to re-estimate parameters

» repeat as long as needed

e This is not real EM!

Example

N > N PP [0.6]
N > elephant [0.2]

N - pyjamas [0.2]

VP> TV NP [1/3]
VP > 1V [1/3]
VP> VPPP [1/3]

5 p = 0.00026

NP/ \P (vs 0.00014)

/\P
' /\
Det N
N PP
p
o\
|
shot an elephant in nly pyjamas

p = 0.00178
S

NP/ \rp
VP/\PP
IV /\P
| |

I slept in my pyjamas

Example

N > N PP [0.6] VP >TV NP [1/3]
N > elephant [0.2] VP> 1V [1/3]
N - pyjamas [0.2] VP> VP PP [1/3]

p = 0.00026 p =0.00178

S
e \ (vs 0.00014)
NP P

S
NP/ \rp
T p
/\ VP/\PP
Det N /\
/\ Y P
b
N PP
= D(\?\I
5 X . ||
/\ I slept in my | pyjamas
Det N
shot an |elephant | in nly pyjalmas

Example

N > N PP [0.6] VP>TV NP [1/3]
N > elephant [0.2] VP> 1V [1/3]
N - pyjamas [0.2] VP> VP PP [1/3]
: = 0.00026 =0.00178

N (s00001 .

PAN
NP VP
T/>\\ S /\PP
Det N | /\P
N//\I? D(\?\I
/ >P\ I slept in rrlly pyjalmas
N

shot an |elephant

in my |pyjamas

MLE on Viterbi parses

N > N PP [1/4] VP> TV NP [1/3]
N > elephant [1/4] VP > IV [1/3]
N - pyjamas [1/2] VP> VP PP [1/3]
p = 0.00044 p = 0.00889
q (vs 0.00033) .
NP/ \p NP/ \rp
VP/ \PP VP/\PP
TmP /\P IV /\P
T O N T
| shot an elephant 1n my pyjamas | slept 1In my pyjamas

Some things to note

e In this example, the likelihood increased.

» this need not always be the case for Viterbi EM

e Viterbi EM commits to a single parse tree per
sentence. This has advantages and disadvantages:

» parse tree easy to compute, and can simply apply MLE

» ignores all uncertainty we had about correct parse
(winning parse tree takes all)

Towards “real” (aka “soft”)

idea: weighted counting of rules in all parse trees

Viterbi-EM
1 - Ctl(l’) + 0 - Ctz(r) + 0 - Ct3(r) + 0 - Ct4(I')

A A A A

P(t1 w) - Cu(r) + P(tz w) - Cp(r) + P(t3 w) - Cui(r) + P(t4 w) - Cu(r)

Expected counts

e Define expected count of rule A > B C,
based on previous parameter estimate.

E(A—BC)=) P(t|w)-Ci(A— BC)
teT

e If we have them, can re-estimate parameters:

E(A— B ()

P(A%BC):Z E(A 1)

e Challenge: How to compute E(A > B C) efhiciently?

» we assume grammars in CNF here

Fundamental idea

1
Py 2270
= %ZP(t) : Z |rule for 4,5,k intis A — B C||
(w) teT 1,7,k
— % S: (S:P(t) - ||rule for ¢, j,kintis A — B C|>
(w ik \teT
1 (> S
— P(t))
P(w) 1,7,k \t of this form = /\
\ / & A e

(note that P(t, w) = P(t)) Wi Wil W) Wil

Fundamental idea

E(A—BC)=) P(t|w)-Cy(A— BC)

teT
1
:WZ P(t)-Cy(A— BC)
teT
1 . :
:mz t)-ZHruleforz,j,kmtlsA%BCH
eT 1,7,k
S:(S‘P rulefori,j,kintisA%Bﬂ)
k \teT
1 S
:—)2< > P(t)) /\
1,7,k | \t of this form -
\ / & A e
call this term u(A > B G, i, j, k) B C

(note that P(t, w) = P(t)) Wi Wil W) Wil

Computing

wWA—BCij k)= Y P(t)
t of this form

NA

W1Aw

AA

Wi WJ 1 W] Wk-1

Computing

WA= BCij k)= Y P(t)
t of this form

N
di: S =*wi ... wig Aw\k_w/n/*/\

Wi A Wn

AA

Wi Wj_1 Wj Wk-1

Computing

WA= BCij k)= Y P(t)
t of this form

N
dlzs:*wl...wilAU/*/\

Wi A Wn

e
B C
dz:B=>*Wi...Wj-1 /\ /\

Wi Wj_1 Wj Wk-1

Computing

WA= BCij k)= Y P(t)
t of this form

N
dlzs:*wl...wilAU/*/\

Wi A Wn

87 C
dz:B=>>e Wi ... Wj-1 /\ /\ (213:C=>>e Wj ... Wk-1
\j Wi W1 Wj Wkl\'\/

w(A— BCi,j, k)=

N
dlzs:*wl...wilAU/*/\

Computing
>, P@)

t of this form

Wi A Wp

dz:B=>*Wi...Wj-1 /\ /\ d3:C=>*Wj..
\J Wi Wj1 Wj Wk \/
wWA—BCijk) = Y P

t of this form

> P(dy) - P(A— B C)- P(d) - P(d3)
t of this form

<ZPd1> P(A— BC)- (ZP@) (%P(d;;))

Computlng 1

WA — BC,i,j k)= > P(t)=a(4,i,k)- P(A— BC)-8(B,i,j) - B(C,j,k)

t of this form
/i(

Wi A Wjp

7\ /\
a1y

=
inside probability outside probability

B(B,i,j) = > P(d) a(A, i k) = > P(d)

d >k d %
B = Wi... Wj—1 S = wl...wi_lAwk...wn

Inside probabilities

B(B,i,j)= Y P(d

d >k
B = Wi... W45 —1

A special case:
/ \ P(w) = B(S,1,n+1)
B C

B(A,i,i+1) = P(A — w;)
B(A,i,k)=) P(A— BC)-B(B,i,j) B(C,jk)
A—B C

1<g<k

Outside probabilities
(A, i, k) = > P(d)

d >k
S — wi...W;—1Awg...w,

Y P(B—AC)-B(Ck,j) - a(B,i,j)+ » P(B—CA)-B(C,]i) aB,jk)

B—AC B—C A
E<i<n 1<9<1

base case:
a(A,1,n+1)=1iff A=S

Wl coe W1 coe Wk coe W] WI] Wl coe W] coe W1 coe Wk WIl

The Inside-Outside Algorithm

e Start with some initial estimate of parameters.
e For each sentence w, compute a, 3, and .

e Compute expected counts E(A > B C).

» sum expected counts over all sentences

» remember that P(w) = (S, 1, n+1)

e Re-estimate P(A > B C) from expected counts.

e Iterate until convergence.

Some remarks

Inside-outside increases likelihood Charniak § Pereip
in each step.

But huge problems with local maxima.

» Carroll & Charniak 92 find 300 diftferent local maxima for
300 different initial parameter estimates.

» Improve by partially bracketing strings (Pereira & Schabes 92).

Therefore, EM doesn't really work for totally
unsupervised PCFG training.

But extremely useful in refining existing grammars
(Berkeley parser; see next time).

Summary

Learning parameters of PCFGs:

» maximum likelihood estimation from raw text
» “hard EM": iterate MLE on Viterbi parses

» EM: use inside-outside algorithm with expected rule counts

PCFG parsing with MLE parse gets f-score in low 70’s.
Will improve on this next time (state of the art: 93).

Have assumed that CFG is given and only parameters
are to be learned. Will fix this later in this course.

