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Probabilistic CFGs

S → NP  VP [1.0] VP → V NP [0.5]

NP → Det N [0.8] VP → VP PP [0.5]
NP → i [0.2] V → shot [1.0]

N → N PP [0.4] PP → P NP [1.0]
N → elephant [0.3] P → in [1.0]

N → pyjamas [0.3] Det → an [0.5]
Det → my [0.5]

(let’s pretend for simplicity that Det = PRP$)



Parse trees
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“correct”  = more probable parse tree
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Evaluation

• Step 1: Decide on training and test corpus. 
For WSJ corpus, there is a conventional split by sections:

2-21 23

TestTraining

22

Devel



Evaluation

• Step 2: How should we measure the accuracy of the 
parser? 

• Straightforward idea: Measure “exact match”, i.e. 
proportion of gold standard trees that parser got right. 

• This is too strict: 
‣ parser makes many decisions in parsing a sentence 

‣ a single incorrect parsing decision makes tree “wrong” 

‣ want more fine-grained measure



Comparing parse trees

• Idea 2 (PARSEVAL): Compare structure of parse 
tree and gold standard tree. 
‣ Labeled: Which constituents (span + syntactic category) of 

one tree also occur in the other? 

‣ Unlabeled: How do the trees bracket the substrings of the 
sentence (ignoring syntactic categories)?

But  the  concept  is  workable
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Precision
What proportion of constituents in parse tree is also present in gold tree?
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Labeled Precision = 7 / 11 = 63.6%  
Unlabeled Precision = 10 / 11 = 90.9%



Recall
What proportion of constituents in gold tree is also present in parse tree?
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F-Score

• Precision and recall measure opposing qualities of  
a parser (“soundness” and “completeness”) 

• Summarize both together in the f-score: 

• In the example, we have labeled f-score 70.0  
and unlabeled f-score 89.9.

F1 =
2 · P ·R
P +R



Today

• Parameters of PCFG = rule probabilities. 

• How do we learn parameters from corpora? 
‣ maximum likelihood estimation 

‣ “hard EM” using Viterbi 

‣ “soft EM” using the inside-outside algorithm



ML Estimation

• Assume we have a treebank. 
‣ that is, every sentence annotated by hand with its 

“correct” parse tree 

• Then we can use MLE to obtain rule probabilities:  

• Standard way of parameter estimation in practice. 
Works well, smoothing only needed for unknown 
words (or replace by POS tags).

P (A � w) =
C(A � w)

C(A � •) =
C(A � w)P
w0 C(A � w0)
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Example
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Unsupervised estimation

• MLE works okay for English. 
‣ German: Tiger treebank exists, but is hard for PCFGs,  

e.g. because of free word order. 

‣ most other languages: phrase structure annotations  
unavailable, expensive to create → unsupervised methods? 

• Unsupervised methods: 
‣ provide CFG, learn parameters from unannotated corpus 

‣ show first “hard EM”, then “soft EM” 

‣ ideas instructive and generalize to other problems



“Hard” aka Viterbi EM

• In the absence of syntactic annotations,  
learner must invent its own parse trees. 

• Viterbi EM: 
‣ start with some parameter estimate 

‣ produce “syntactic annotations” by computing best tree 
for each sentence using Viterbi 

‣ apply MLE to re-estimate parameters 

‣ repeat as long as needed 

• This is not real EM!
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Example
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MLE on Viterbi parses
N → N PP [1/4] VP → TV NP [1/3]

N → elephant [1/4] VP → IV [1/3]

N → pyjamas [1/2] VP → VP PP [1/3]
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Some things to note

• In this example, the likelihood increased. 
‣ this need not always be the case for Viterbi EM 

• Viterbi EM commits to a single parse tree per 
sentence. This has advantages and disadvantages: 
‣ parse tree easy to compute, and can simply apply MLE 

‣ ignores all uncertainty we had about correct parse 
(winning parse tree takes all)



Towards “real” (aka “soft”) 
idea: weighted counting of rules in all parse trees

t1 t2 t3 t4

t1 t2 t3 t4

1 ⋅ Ct1(r) +  0 ⋅ Ct2(r) +  0 ⋅ Ct3(r) +  0 ⋅ Ct4(r)

P(t1 | w) ⋅ Ct1(r) +  P(t2 | w) ⋅ Ct2(r) +  P(t3 | w) ⋅ Ct3(r) +  P(t4 | w) ⋅ Ct4(r)

EM

Viterbi-EM



Expected counts

• Define expected count of rule A → B C,  
based on previous parameter estimate. 

• If we have them, can re-estimate parameters: 
 

• Challenge: How to compute E(A → B C) efficiently? 
‣ we assume grammars in CNF here

E(A ! B C) =
X

t2T
P (t | w) · Ct(A ! B C)

P (A ! B C) =
E(A ! B C)P

r E(A ! r)



Fundamental idea

(note that P(t, w) = P(t))
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call this term μ(A → B C, i, j, k)



Computing μ
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Computing μ
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Inside probabilities
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Outside probabilities
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The Inside-Outside Algorithm

• Start with some initial estimate of parameters. 

• For each sentence w, compute α, β, and μ. 

• Compute expected counts E(A → B C). 
‣ sum expected counts over all sentences 

‣ remember that P(w) = β(S, 1, n+1) 

• Re-estimate P(A → B C) from expected counts. 

• Iterate until convergence.



Some remarks

• Inside-outside increases likelihood  
in each step. 

• But huge problems with local maxima. 
‣ Carroll & Charniak 92 find 300 different local maxima for  

300 different initial parameter estimates. 

‣ Improve by partially bracketing strings (Pereira & Schabes 92). 

• Therefore, EM doesn’t really work for totally 
unsupervised PCFG training. 

• But extremely useful in refining existing grammars 
(Berkeley parser; see next time).

Charniak Pereira



Summary

• Learning parameters of PCFGs: 
‣ maximum likelihood estimation from raw text 

‣ “hard EM”: iterate MLE on Viterbi parses 

‣ EM: use inside-outside algorithm with expected rule counts 

• PCFG parsing with MLE parse gets f-score in low 70’s. 
Will improve on this next time (state of the art: 93). 

• Have assumed that CFG is given and only parameters 
are to be learned. Will fix this later in this course.


