
Training PCFGs

Computational Linguistics 

Alexander Koller

30 November 2018

Probabilistic CFGs

S → NP VP [1.0] VP → V NP [0.5]

NP → Det N [0.8] VP → VP PP [0.5]
NP → i [0.2] V → shot [1.0]

N → N PP [0.4] PP → P NP [1.0]
N → elephant [0.3] P → in [1.0]

N → pyjamas [0.3] Det → an [0.5]
Det → my [0.5]

(let’s pretend for simplicity that Det = PRP$)

Parse trees

S

NP VP

I

V
NP

anshot

PP

P

in

Det

N

elephant

NP

my

Det N

pyjamas

N

S

NP VP

VP

I

V NP

anshot

PP

P

in

Det N

elephant

NP

my

Det N

pyjamas

p = 0.00072 p = 0.00057

“correct” = more probable parse tree

0.2 0.5

0.5

0.8

0.5 0.3

0.8

0.5 0.3

0.2 0.5

0.8

0.5

0.8

0.5 0.3

0.4

0.3

Evaluation

• Step 1: Decide on training and test corpus. 
For WSJ corpus, there is a conventional split by sections:

2-21 23

TestTraining

22

Devel

Evaluation

• Step 2: How should we measure the accuracy of the
parser?

• Straightforward idea: Measure “exact match”, i.e.
proportion of gold standard trees that parser got right.

• This is too strict:
‣ parser makes many decisions in parsing a sentence

‣ a single incorrect parsing decision makes tree “wrong”

‣ want more fine-grained measure

Comparing parse trees

• Idea 2 (PARSEVAL): Compare structure of parse
tree and gold standard tree.
‣ Labeled: Which constituents (span + syntactic category) of

one tree also occur in the other?

‣ Unlabeled: How do the trees bracket the substrings of the
sentence (ignoring syntactic categories)?

But the concept is workable

CC DT NN VBZ JJ

NP-SBJ ADJP

VP
S

But the concept is workable

IN DT NN VBZ JJ

NP ADJP

VP
S

PP
NP-SBJ

Gold Parse

Precision
What proportion of constituents in parse tree is also present in gold tree?

But the concept is workable

CC DT NN VBZ JJ

NP-SBJ ADJP

VP
S

But the concept is workable

IN DT NN VBZ JJ

NP ADJP

VP
S

PP
NP-SBJ

Gold Parse✓

✓

✓

✓✓✓✓

❌

(✓)

(✓) (✓)

Labeled Precision = 7 / 11 = 63.6%  
Unlabeled Precision = 10 / 11 = 90.9%

Recall
What proportion of constituents in gold tree is also present in parse tree?

But the concept is workable

CC DT NN VBZ JJ

NP-SBJ ADJP

VP
S

But the concept is workable

IN DT NN VBZ JJ

NP ADJP

VP
S

PP
NP-SBJ

Gold Parse✓

(✓)

Labeled Recall = 7 / 9 = 77.8%  
Unlabeled Recall = 8 / 9 = 88.9%

✓

✓

✓✓✓✓

❌

F-Score

• Precision and recall measure opposing qualities of  
a parser (“soundness” and “completeness”)

• Summarize both together in the f-score: 

• In the example, we have labeled f-score 70.0  
and unlabeled f-score 89.9.

F1 =
2 · P ·R
P +R

Today

• Parameters of PCFG = rule probabilities.

• How do we learn parameters from corpora?
‣ maximum likelihood estimation

‣ “hard EM” using Viterbi

‣ “soft EM” using the inside-outside algorithm

ML Estimation

• Assume we have a treebank.
‣ that is, every sentence annotated by hand with its 

“correct” parse tree

• Then we can use MLE to obtain rule probabilities:  

• Standard way of parameter estimation in practice. 
Works well, smoothing only needed for unknown
words (or replace by POS tags).

P (A � w) =
C(A � w)

C(A � •) =
C(A � w)P
w0 C(A � w0)

Example
S

NP VP

VP

I

IV

slept

PP

P

in

NP

my

Det N

pyjamas

S

NP VP

VP

I

TV NP

anshot

PP

P

in

Det N

elephant

NP

my

Det N

pyjamas

Example
S

NP VP

VP

I

IV

slept

PP

P

in

NP

my

Det N

pyjamas

S

NP VP

VP

I

TV NP

anshot

PP

P

in

Det N

elephant

NP

my

Det N

pyjamas

Example
S

NP VP

VP

I

IV

slept

PP

P

in

NP

my

Det N

pyjamas

S

NP VP

VP

I

TV NP

anshot

PP

P

in

Det N

elephant

NP

my

Det N

pyjamas

Example
S

NP VP

VP

I

IV

slept

PP

P

in

NP

my

Det N

pyjamas

N → N PP [0] VP → TV NP [1/4]

N → elephant [1/3] VP → IV [1/4]

N → pyjamas [2/3] VP → VP PP [1/2]

S

NP VP

VP

I

TV NP

anshot

PP

P

in

Det N

elephant

NP

my

Det N

pyjamas

Unsupervised estimation

• MLE works okay for English.
‣ German: Tiger treebank exists, but is hard for PCFGs,  

e.g. because of free word order.

‣ most other languages: phrase structure annotations  
unavailable, expensive to create → unsupervised methods?

• Unsupervised methods:
‣ provide CFG, learn parameters from unannotated corpus

‣ show first “hard EM”, then “soft EM”

‣ ideas instructive and generalize to other problems

“Hard” aka Viterbi EM

• In the absence of syntactic annotations,  
learner must invent its own parse trees.

• Viterbi EM:
‣ start with some parameter estimate

‣ produce “syntactic annotations” by computing best tree 
for each sentence using Viterbi

‣ apply MLE to re-estimate parameters

‣ repeat as long as needed

• This is not real EM!

Example
N → N PP [0.6] VP → TV NP [1/3]

N → elephant [0.2] VP → IV [1/3]

N → pyjamas [0.2] VP → VP PP [1/3]

S

NP VP

VP

I

IV

slept

PP

P

in

NP

my

Det N

pyjamas

1

S

NP VP

I

TV
NP

anshot

PP

P

in

Det

N

elephant

NP

my

Det N

pyjamas

N

p = 0.00026  
(vs 0.00014)

p = 0.00178

Example
N → N PP [0.6] VP → TV NP [1/3]

N → elephant [0.2] VP → IV [1/3]

N → pyjamas [0.2] VP → VP PP [1/3]

S

NP VP

VP

I

IV

slept

PP

P

in

NP

my

Det N

pyjamas

1

S

NP VP

I

TV
NP

anshot

PP

P

in

Det

N

elephant

NP

my

Det N

pyjamas

N

p = 0.00026  
(vs 0.00014)

p = 0.00178

Example
N → N PP [0.6] VP → TV NP [1/3]

N → elephant [0.2] VP → IV [1/3]

N → pyjamas [0.2] VP → VP PP [1/3]

S

NP VP

VP

I

IV

slept

PP

P

in

NP

my

Det N

pyjamas

1

S

NP VP

I

TV
NP

anshot

PP

P

in

Det

N

elephant

NP

my

Det N

pyjamas

N

p = 0.00026  
(vs 0.00014)

p = 0.00178

MLE on Viterbi parses
N → N PP [1/4] VP → TV NP [1/3]

N → elephant [1/4] VP → IV [1/3]

N → pyjamas [1/2] VP → VP PP [1/3]

2

S

NP VP

VP

I

IV

slept

PP

P

in

NP

my

Det N

pyjamas

p = 0.00044  
(vs 0.00033)

p = 0.00889
S

NP VP

VP

I

TV NP

anshot

PP

P

in

Det N

elephant

NP

my

Det N

pyjamas

Some things to note

• In this example, the likelihood increased.
‣ this need not always be the case for Viterbi EM

• Viterbi EM commits to a single parse tree per
sentence. This has advantages and disadvantages:
‣ parse tree easy to compute, and can simply apply MLE

‣ ignores all uncertainty we had about correct parse 
(winning parse tree takes all)

Towards “real” (aka “soft”)
idea: weighted counting of rules in all parse trees

t1 t2 t3 t4

t1 t2 t3 t4

1 ⋅ Ct1(r) + 0 ⋅ Ct2(r) + 0 ⋅ Ct3(r) + 0 ⋅ Ct4(r)

P(t1 | w) ⋅ Ct1(r) + P(t2 | w) ⋅ Ct2(r) + P(t3 | w) ⋅ Ct3(r) + P(t4 | w) ⋅ Ct4(r)

EM

Viterbi-EM

Expected counts

• Define expected count of rule A → B C,  
based on previous parameter estimate.

• If we have them, can re-estimate parameters: 
 

• Challenge: How to compute E(A → B C) efficiently?
‣ we assume grammars in CNF here

E(A ! B C) =
X

t2T
P (t | w) · Ct(A ! B C)

P (A ! B C) =
E(A ! B C)P

r E(A ! r)

Fundamental idea

(note that P(t, w) = P(t))

E(A ! B C) =

X

t2T
P (t | w) · Ct(A ! B C)

=

1

P (w)

X

t2T
P (t) · Ct(A ! B C)

=

1

P (w)

X

t2T
P (t) ·

X

i,j,k

||rule for i, j, k in t is A ! B C||

=

1

P (w)

X

i,j,k

X

t2T
P (t) · ||rule for i, j, k in t is A ! B C||

!

=

1

P (w)

X

i,j,k

X

t of this form

P (t)

!

A
B C

w1

wi wj-1 wj wk-1

wn

S

Fundamental idea

(note that P(t, w) = P(t))

E(A ! B C) =

X

t2T
P (t | w) · Ct(A ! B C)

=

1

P (w)

X

t2T
P (t) · Ct(A ! B C)

=

1

P (w)

X

t2T
P (t) ·

X

i,j,k

||rule for i, j, k in t is A ! B C||

=

1

P (w)

X

i,j,k

X

t2T
P (t) · ||rule for i, j, k in t is A ! B C||

!

=

1

P (w)

X

i,j,k

X

t of this form

P (t)

!

A
B C

w1

wi wj-1 wj wk-1

wn

S

call this term μ(A → B C, i, j, k)

Computing μ

A
B C

w1

wi wj-1 wj wk-1

wn

S

µ(A ! B C, i, j, k) =
X

t of this form

P (t) = �(A, i, k) · P (A ! B C) · ↵(B, i, j) · ↵(C, j, k)

Computing μ

A
B C

w1

wi wj-1 wj wk-1

wn

S

µ(A ! B C, i, j, k) =
X

t of this form

P (t) = �(A, i, k) · P (A ! B C) · ↵(B, i, j) · ↵(C, j, k)

d1: S ⇒* w1 … wi-1 A wk … wn

Computing μ

A
B C

w1

wi wj-1 wj wk-1

wn

S

µ(A ! B C, i, j, k) =
X

t of this form

P (t) = �(A, i, k) · P (A ! B C) · ↵(B, i, j) · ↵(C, j, k)

d1: S ⇒* w1 … wi-1 A wk … wn

d2: B ⇒* wi … wj-1

Computing μ

A
B C

w1

wi wj-1 wj wk-1

wn

S

µ(A ! B C, i, j, k) =
X

t of this form

P (t) = �(A, i, k) · P (A ! B C) · ↵(B, i, j) · ↵(C, j, k)

d1: S ⇒* w1 … wi-1 A wk … wn

d2: B ⇒* wi … wj-1 d3: C ⇒* wj … wk-1

Computing μ

A
B C

w1

wi wj-1 wj wk-1

wn

S

µ(A ! B C, i, j, k) =
X

t of this form

P (t) = �(A, i, k) · P (A ! B C) · ↵(B, i, j) · ↵(C, j, k)

d1: S ⇒* w1 … wi-1 A wk … wn

d2: B ⇒* wi … wj-1 d3: C ⇒* wj … wk-1

µ(A ! B C, i, j, k) =

X

t of this form

P (t)

=

X

t of this form

P (d1) · P (A ! B C) · P (d2) · P (d3)

=

X

d1

P (d1)

!
· P (A ! B C) ·

X

d2

P (d2)

!
·

X

d3

P (d3)

!

Computing μ

A
B C

w1

wi wj-1 wj wk-1

wn

S

inside probability outside probability
�(B, i, j) =

X

B
d=)

⇤
wi...wj�1

P (d) ↵(A, i, k) =
X

S
d=)

⇤
w1...wi�1Awk...wn

P (d)

µ(A ! B C, i, j, k) =
X

t of this form

P (t) = ↵(A, i, k) · P (A ! B C) · �(B, i, j) · �(C, j, k)

Inside probabilities

A

B C

wi wk-1wj-1 wj

special case: 
P(w) = β(S,1,n+1)

�(B, i, j) =
X

B
d=)

⇤
wi...wj�1

P (d)

�(A, i, k) =
X

A!B C
i<j<k

P (A ! B C) · �(B, i, j) · �(C, j, k)

�(A, i, i+ 1) = P (A ! wi)

Outside probabilities

A

w1 wi wk wj wn

B

C

...

C

B

A

w1 wj wi wk wn...

S Sbase case:
α(A,1,n+1) = 1 iff A = S

↵(A, i, k) =
X

S
d=)

⇤
w1...wi�1Awk...wn

P (d)

=
X

B!A C
k<jn

P (B ! A C) · �(C, k, j) · ↵(B, i, j) +
X

B!C A
1j<i

P (B ! C A) · �(C, j, i) · ↵(B, j, k)

The Inside-Outside Algorithm

• Start with some initial estimate of parameters.

• For each sentence w, compute α, β, and μ.

• Compute expected counts E(A → B C).
‣ sum expected counts over all sentences

‣ remember that P(w) = β(S, 1, n+1)

• Re-estimate P(A → B C) from expected counts.

• Iterate until convergence.

Some remarks

• Inside-outside increases likelihood  
in each step.

• But huge problems with local maxima.
‣ Carroll & Charniak 92 find 300 different local maxima for  

300 different initial parameter estimates.

‣ Improve by partially bracketing strings (Pereira & Schabes 92).

• Therefore, EM doesn’t really work for totally
unsupervised PCFG training.

• But extremely useful in refining existing grammars 
(Berkeley parser; see next time).

Charniak Pereira

Summary

• Learning parameters of PCFGs:
‣ maximum likelihood estimation from raw text

‣ “hard EM”: iterate MLE on Viterbi parses

‣ EM: use inside-outside algorithm with expected rule counts

• PCFG parsing with MLE parse gets f-score in low 70’s.
Will improve on this next time (state of the art: 93).

• Have assumed that CFG is given and only parameters
are to be learned. Will fix this later in this course.

