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Probabilistic CFGs
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Parse trees
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“correct” = more probable parse tree




Evaluation

e Step 1: Decide on training and test corpus.
For WS]J corpus, there is a conventional split by sections:
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Evaluation

Step 2: How should we measure the accuracy of the
parser?

Straightforward idea: Measure “exact match’, i.e.
proportion of gold standard trees that parser got right.

This is too strict:
» parser makes many decisions in parsing a sentence
» a single incorrect parsing decision makes tree “wrong”

» want more fine-grained measure



Comparing parse trees

o Idea 2 (PARSEVAL): Compare structure of parse
tree and gold standard tree.

» Labeled: Which constituents (span + syntactic category) of
one tree also occur in the other?

» Unlabeled: How do the trees bracket the substrings of the
sentence (ignoring syntactic categories)?
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Precision

What proportion of constituents in parse tree is also present in gold tree?
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Labeled Precision=7/11 = 63.6%
Unlabeled Precision=10/11 =90.9%



Recall

What proportion of constituents in gold tree is also present in parse tree?

Gold Sv

/\VP‘/

NP SBI AD]P

4
(C)C DT I{ VBZ H

But the concept is WorLable

Labeled Recall=7/9=77.8%

Unlabeled Recall =8 /9 = 88.9%
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F-Score

Precision and recall measure opposing qualities of
a parser (“soundness” and “completeness”)

Summarize both together in the f-score:
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In the example, we have labeled f-score 70.0
and unlabeled f-score 89.9.



Today

e Parameters of PCFG = rule probabilities.

e How do we learn parameters from corpora?

» maximum likelihood estimation
» “hard EM” using Viterbi

» “soft EM” using the inside-outside algorithm



ML Estimation

Assume we have a treebank.

» that is, every sentence annotated by hand with its
“correct” parse tree

Then we can use MLE to obtain rule probabilities:

CA—w)  CA—w)
C(A—e) > C(A—w)

P(A — w) =

Standard way of parameter estimation in practice.
Works well, smoothing only needed for unknown
words (or replace by POS tags).
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Example
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Unsupervised estimation

e MLE works okay for English.

» German: Tiger treebank exists, but is hard for PCFGs,
e.g. because of free word order.

» most other languages: phrase structure annotations
unavailable, expensive to create > unsupervised methods?

e Unsupervised methods:

» provide CFG, learn parameters from unannotated corpus
» show first “hard EM”, then “soft EM”

» ideas instructive and generalize to other problems



“"Hard” aka Viterbi EM

e In the absence of syntactic annotations,
learner must invent its own parse trees.

e Viterbi EM:

» start with some parameter estimate

» produce “syntactic annotations” by computing best tree
for each sentence using Viterbi

» apply MLE to re-estimate parameters

» repeat as long as needed

e This is not real EM!



Example

N > N PP [0.6]
N > elephant  [0.2]

N - pyjamas [0.2]

VP> TV NP [1/3]
VP > 1V [1/3]
VP> VPPP [1/3]

5 p = 0.00026

NP/ \P (vs 0.00014)

/\P
' /\
Det N
N PP
p
o\
|
shot an  elephant in nly pyjamas

p = 0.00178
S

NP/ \rp
VP/\PP
IV /\P
| |

I slept in my pyjamas




Example
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Example
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MLE on Viterbi parses
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Some things to note

e In this example, the likelihood increased.

» this need not always be the case for Viterbi EM

e Viterbi EM commits to a single parse tree per
sentence. This has advantages and disadvantages:

» parse tree easy to compute, and can simply apply MLE

» ignores all uncertainty we had about correct parse
(winning parse tree takes all)



Towards “real” (aka “soft”)

idea: weighted counting of rules in all parse trees

Viterbi-EM
1 - Ctl(l’) + 0 - Ctz(r) + 0 - Ct3(r) + 0 - Ct4(I')

A A A A

P(t1 w) - Cu(r) + P(tz w) - Cp(r) + P(t3 w) - Cui(r) + P(t4 w) - Cu(r)




Expected counts

e Define expected count of rule A > B C,
based on previous parameter estimate.

E(A—BC)=) P(t|w)-Ci(A— BC)
teT

e If we have them, can re-estimate parameters:

E(A— B ()

P(A%BC):Z E(A 1)

e Challenge: How to compute E(A > B C) efhiciently?

» we assume grammars in CNF here



Fundamental idea
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Fundamental idea
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Computing

wWA—BCij k)= Y  P(t)
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Computing

WA= BCij k)= Y  P(t)
t of this form
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Computing

WA= BCij k)= Y  P(t)
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Computing
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w(A— BCi,j, k)=

N
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Computlng 1
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Inside probabilities

B(B,i,j)= Y  P(d

d >k
B = Wi... W45 —1

A special case:
/ \ P(w) = B(S,1,n+1)
B C

B(A,i,i+1) = P(A — w;)
B(A,i,k)= ) P(A— BC)-B(B,i,j) B(C,jk)
A—B C

1<g<k




Outside probabilities
(A, i, k) = > P(d)

d >k
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base case:
a(A,1,n+1)=1iff A=S
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The Inside-Outside Algorithm

e Start with some initial estimate of parameters.
e For each sentence w, compute a, 3, and .

e Compute expected counts E(A > B C).

» sum expected counts over all sentences

» remember that P(w) = (S, 1, n+1)

e Re-estimate P(A > B C) from expected counts.

e Iterate until convergence.



Some remarks

Inside-outside increases likelihood Charniak § Pereip
in each step.

But huge problems with local maxima.

» Carroll & Charniak 92 find 300 diftferent local maxima for
300 different initial parameter estimates.

» Improve by partially bracketing strings (Pereira & Schabes 92).

Therefore, EM doesn't really work for totally
unsupervised PCFG training.

But extremely useful in refining existing grammars
(Berkeley parser; see next time).




Summary

Learning parameters of PCFGs:

» maximum likelihood estimation from raw text
» “hard EM": iterate MLE on Viterbi parses

» EM: use inside-outside algorithm with expected rule counts

PCFG parsing with MLE parse gets f-score in low 70’s.
Will improve on this next time (state of the art: 93).

Have assumed that CFG is given and only parameters
are to be learned. Will fix this later in this course.



