Probabilistic Context-free Grammars

Computational Linguistics

Alexander Koller

23 November 2018

CKY recognizer: pseudocode

Data structure: Ch(i,k) eventually contains {A | A $\Rightarrow^* w_i \dots w_{k-1}$ } (initially all empty).

for each i from 1 to n: for each production rule $A \rightarrow w_i$: add A to Ch(i, i+1)

for each *width* b from 2 to n: for each *start position* i from 1 to n-b+1: for each *left width* k from 1 to b-1: for each $B \in Ch(i, i+k)$ and $C \in Ch(i+k,i+b)$: for each production rule $A \rightarrow B C$: add A to Ch(i,i+b)

claim that $w \in L(G)$ iff $S \in Ch(1,n+1)$

Complexity

- *Time* complexity of CKY recognizer is O(n³), although number of parse trees grows exponentially.
- Space complexity of CKY recognizer is O(n²) (one cell for each substring).
- Efficiency depends crucially on CNF.
 Naive generalization of CKY to rules A → B₁ ... B_r raises time complexity to O(n^{r+1}).

Recognizer to Parser

 $S \rightarrow NP$ VP $V \rightarrow ate$ $Det \rightarrow a$ $NP \rightarrow Det N$ $NP \rightarrow John$ $N \rightarrow sandwich$ $VP \rightarrow V NP$ $VP \rightarrow V NP$

Recognizer to Parser

Recognizer to Parser

- Parser: need to construct parse trees from chart.
- Do this by memorizing how each A ∈ Ch(i,k) can be constructed from smaller parts.
 - built from B ∈ Ch(i,j) and C ∈ Ch(j,k) using A → B C:
 store (B,C,j) in *backpointer* for A in Ch(i,k).
 - analogous to backpointers in HMMs
- Once chart has been filled, enumerate trees recursively by following backpointers, starting at S ∈ Ch(1,n+1).

Let's play a game

- Given a nonterminal symbol, expand it.
- You can take one of two moves:
 - expand nonterminal into a sequence of other nontermianls
 - use nonterminals S, NP, VP, PP, ... or POS tags
 - expand nonterminal into a word

Penn Treebank POS tags

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	66	Left quote	(' or '')
POS	Possessive ending	's	"	Right quote	(' or '')
PP	Personal pronoun	I, you, he	(Left parenthesis	$([, (, \{, <)$
PP\$	Possessive pronoun	your, one's)	Right parenthesis	(],),
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster		Sentence-final punc	(.!?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(:;)
RP	Particle	up, off			

Some real trees

nltk.corpus.treebank.parsed_sents("wsj_0001.mrg")[0].draw()

Ambiguity

Need to *disambiguate:* find "correct" parse tree for ambiguous sentence.

How do we identify the "correct" tree? How do we compute it efficiently? (Remember: exponential number of readings.)

Probabilistic CFGs

- A *probabilistic context-free grammar (PCFG)* is a context-free grammar in which
 - ▶ each production rule A → w has a probability P(A → w | A): when we expand A, how likely is it that we choose A → w?
 - for each nonterminal A, probabilities must sum to one:

$$\sum_{w} P(A \to w \mid A) = 1$$

• we will write $P(A \rightarrow w)$ instead of $P(A \rightarrow w \mid A)$ for short

An example

$S \rightarrow NP VP$	[1.0]	$VP \rightarrow V NP$	[0.5]
$NP \rightarrow Det N$	[0.8]	$VP \rightarrow VP PP$	[0.5]
$NP \rightarrow i$	[0.2]	$V \rightarrow shot$	[1.0]
$N \rightarrow N PP$	[0.4]	$PP \rightarrow P NP$	[1.0]
$N \rightarrow elephant$	[0.3]	$P \rightarrow in$	[1.0]
N → pyjamas	[0.3]	$\text{Det} \rightarrow \text{an}$	[0.5]
		$Det \rightarrow my$	[0.5]

(let's pretend for simplicity that Det = PRP\$)

Generative process

- PCFG generates random derivations of CFG.
 - each event (expand nonterminal by production rule) statistically independent of all the others

$$S \xrightarrow{1.0} NP VP \xrightarrow{0.2} i VP \xrightarrow{0.5} i VP PP$$

$$\xrightarrow{0.00072}$$

$$\Rightarrow^* i \text{ shot an elephant in my pyjamas}$$

$$S \stackrel{1.0}{\Rightarrow} NP VP \stackrel{0.2}{\Rightarrow} i VP \stackrel{0.4}{\Rightarrow} * i V Det N$$

$$\stackrel{0.00057}{\longrightarrow} i V Det N PP \implies * i shot \dots pyjamas$$

$$\stackrel{0.4}{\longrightarrow} VDet N PP \stackrel{0.4}{\Rightarrow} * i shot \dots pyjamas$$

Parse trees

"correct" = more probable parse tree

Language modeling

• As with other generative models (HMMs!), can define probability P(w) of string by marginalizing over its possible parses:

$$P(w) = \sum_{t \in \mathsf{parses}(w)} P(t)$$

• Can compute this efficiently with *inside probabilities*, see next time.

Disambiguation

- Assumption: "correct" parse tree = the parse tree that had highest prob of being generated by random process, i.e. $\operatorname{argmax} P(t)$ $t \in \operatorname{parses}(w)$
- We use a variant of the Viterbi algorithm to compute it.
- Here, Viterbi based on CKY; can do it with other parsing algorithms too.

The intuition

Ordinary CKY parse chart: $Ch(i,k) = \{A \mid A \Rightarrow^* w_i \dots w_{k-1}\}$

The intuition

VP: 0.0036	NP: 0.006	N: 0.014	PP: 0.12	in my pyjamas
VP: 0.06	NP: 0.12	N: 0.3	in my pyjamas 	
	Det: 0.5	elephant	-	
V: 1.0 shot	an 	•		

Viterbi CKY

• Define for each span (i,k) and each nonterminal A the probability

$$V(A, i, k) = \max_{\substack{A \Rightarrow w_i \dots w_{k-1}}} P(d)$$

• Compute V iteratively "bottom up", i.e. starting from small spans and working our way up to longer spans.

$$V(A, i, i + 1) = P(A \to w_i)$$

$$V(A, i, k) = \max_{\substack{A \to B \ C \\ i < j < k}} P(A \to B \ C) \cdot V(B, i, j) \cdot V(C, j, k)$$

Viterbi CKY - pseudocode

```
set all V[A,i,j] to 0
for all i from 1 to n:
    for all A with rule A \rightarrow w<sub>i</sub>:
        add A to Ch(i,i+1)
        V[A, i, i+1] = P(A -> w_i)
for all b from 2 to n:
  for all i from 1 to n-b+1:
    for all k from 1 to b-1:
      for all B in Ch(i,i+k) and C in Ch(i+k,i+b):
        for all production rules A -> B C:
          add A to Ch(i,i+b)
           if P(A -> B C) * V[B,i,i+k] * V[C,i+k,i+b] > V[A,i,i+b]:
             V[A,i,i+b] = P(A \rightarrow B C) * V[B,i,i+k] * V[C,i+k,i+b]
```


Remarks

- Viterbi CKY has exactly the same nested loops as the ordinary CKY parser.
 - computing V in addition to Ch only changes constant factor
 - ▶ thus asymptotic runtime remains O(n³)
- Compute optimal parse by storing backpointers.
 - same backpointers as in ordinary CKY
 - sufficient to store the *best* backpointer for each (A,i,k) if we only care about best parse (and not all parses),
 i.e. actually uses less memory than ordinary CKY

Obtaining the PCFG

- How to obtain the CFG?
 - write by hand
 - derive from *treebank*
 - grammar induction from raw text
- How to obtain the rule probabilities once we have the CFG?
 - maximum likelihood estimation from treebank
 - EM training from raw text (inside-outside algorithm)

The Penn Treebank

- Large (in the mid-90s) quantity of text, annotated with POS tags and syntactic structures.
- Consists of several sub-corpora:
 - Wall Street Journal: 1 year of news text, 1 million words
 - Brown corpus: balanced corpus, 1 million words
 - ATIS: dialogues on flight bookings, 5000 words
 - Switchboard: spoken dialogue, 3 million words
- WSJ PTB is standard corpus for training and evaluating PCFG parsers.

Annotation format

Annotation format

Reading off grammar

- Can directly read off "grammar in annotators' heads" from trees in treebank.
- Yields very large CFG, e.g. 4500 rules for VP: VP → VBD PP
 VP → VBD PP PP
 VP → VBD PP PP PP
 VP → VBD PP PP PP
 VP → VBD ADVP PP
 VP → VBD PP ADVP

... $VP \rightarrow VBD PP PP PP PP PP ADVP PP$

Reading off grammar

- Can directly read off "grammar in annotators' heads" from trees in treebank.
- Yields very large CFG, e.g. 4500 rules for VP:
 VP → VBD PP
 VP → VBD PP PI
 VP → VBD PP PI
 VP → VBD PP PI
 VP → VBD ADVP PP
 VP → VBD PP ADVP
 ...
 VP → VBD PP PP PP PP PP PP PP PP ADVP PP

Evaluation

• Step 1: Decide on training and test corpus. For WSJ corpus, there is a conventional split by sections:

Evaluation

- Step 2: How should we measure the accuracy of the parser?
- Straightforward idea: Measure "exact match", i.e. proportion of gold standard trees that parser got right.
- This is too strict:
 - parser makes many decisions in parsing a sentence
 - a single incorrect parsing decision makes tree "wrong"
 - want more fine-grained measure

Comparing parse trees

- Idea 2 (PARSEVAL): Compare *structure* of parse tree and gold standard tree.
 - Labeled: Which constituents (span + syntactic category) of one tree also occur in the other?
 - Unlabeled: How do the trees bracket the substrings of the sentence (ignoring syntactic categories)?

Parse

Precision

What proportion of constituents in *parse tree* is also present in *gold tree*?

Labeled Precision = 7 / 11 = 63.6%Unlabeled Precision = 10 / 11 = 90.9%

Recall

What proportion of constituents in *gold tree* is also present in *parse tree*?

Labeled Recall = 7 / 9 = 77.8% Unlabeled Recall = 8 / 9 = 88.9%

F-Score

- Precision and recall measure opposing qualities of a parser ("soundness" and "completeness")
- Summarize both together in the *f*-score:

$$F_1 = \frac{2 \cdot P \cdot R}{P + R}$$

• In the example, we have labeled f-score 70.0 and unlabeled f-score 89.9.

Summary

- PCFGs extend CFGs with rule probabilities.
 - Events of random process are nonterminal expansion steps. These are all statistically independent.
 - Use Viterbi CKY parser to find most probable parse tree for a sentence in cubic time.
- Read grammars off treebanks.
 - next time: learn rule probabilities
- Evaluation of statistical parsers.