Probabilistic
 Context-free Grammars

Computational Linguistics

Alexander Koller

23 November 2018

The CKY Recognizer

CKY recognizer: pseudocode

Data structure: $\mathrm{Ch}(\mathrm{i}, \mathrm{k})$ eventually contains $\left\{\mathrm{A} \mid \mathrm{A} \Rightarrow^{*} \mathrm{w}_{\mathrm{i}} \ldots \mathrm{w}_{\mathrm{k}-1}\right\}$ (initially all empty).
for each i from 1 to n : for each production rule $\mathrm{A} \rightarrow \mathrm{w}_{\mathrm{i}}$: add A to $\mathrm{Ch}(\mathrm{i}, \mathrm{i}+1)$
for each width b from 2 to n : for each start position i from 1 to $\mathrm{n}-\mathrm{b}+1$: for each left width k from 1 to $\mathrm{b}-1$:
for each $\mathrm{B} \in \mathrm{Ch}(\mathrm{i}, \mathrm{i}+\mathrm{k})$ and $\mathrm{C} \in \mathrm{Ch}(\mathrm{i}+\mathrm{k}, \mathrm{i}+\mathrm{b})$: for each production rule $\mathrm{A} \rightarrow \mathrm{BC}$: add A to $\mathrm{Ch}(\mathrm{i}, \mathrm{i}+\mathrm{b})$
claim that $\mathrm{w} \in \mathrm{L}(\mathrm{G})$ iff $\mathrm{S} \in \mathrm{Ch}(1, \mathrm{n}+1)$

Complexity

- Time complexity of CKY recognizer is $\mathrm{O}\left(\mathrm{n}^{3}\right)$, although number of parse trees grows exponentially.
- Space complexity of CKY recognizer is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ (one cell for each substring).
- Efficiency depends crucially on CNF. Naive generalization of CKY to rules $\mathrm{A} \rightarrow \mathrm{B}_{1} \ldots \mathrm{~B}_{\mathrm{r}}$ raises time complexity to $\mathrm{O}\left(\mathrm{n}^{\mathrm{r}+1}\right)$.

Recognizer to Parser

$$
\begin{array}{lll}
\mathrm{S} \rightarrow \text { NP VP } & \mathrm{V} \rightarrow \text { ate } & \text { Det } \rightarrow \mathrm{a} \\
\mathrm{NP} \rightarrow \text { Det N } & \mathrm{NP} \rightarrow \text { John } & \mathrm{N} \rightarrow \text { sandwich } \\
\mathrm{VP} \rightarrow \text { V NP } & &
\end{array}
$$

Cell at column i, row k: $\left\{\mathrm{A} \mid \mathrm{A} \Rightarrow^{*} \mathrm{w}_{\mathrm{i}} \ldots \mathrm{w}_{\mathrm{k}-1}\right\}$

Recognizer to Parser

$$
\begin{array}{lll}
\mathrm{S} \rightarrow \mathrm{NP} \text { VP } & \mathrm{V} \rightarrow \text { ate } & \text { Det } \rightarrow \mathrm{a} \\
\mathrm{NP} \rightarrow \text { Det N } & \mathrm{NP} \rightarrow \text { John } & \mathrm{N} \rightarrow \text { sandwich } \\
\mathrm{VP} \rightarrow \text { V NP } & &
\end{array}
$$

Cell at column i, row k: $\left\{\mathrm{A} \mid \mathrm{A} \Rightarrow^{*} \mathrm{w}_{\mathrm{i}} \ldots \mathrm{w}_{\mathrm{k}-1}\right\}$

Recognizer to Parser

- Parser: need to construct parse trees from chart.
- Do this by memorizing how each $\mathrm{A} \in \mathrm{Ch}(\mathrm{i}, \mathrm{k})$ can be constructed from smaller parts.
- built from $\mathrm{B} \in \mathrm{Ch}(\mathrm{i}, \mathrm{j})$ and $\mathrm{C} \in \mathrm{Ch}(\mathrm{j}, \mathrm{k})$ using $\mathrm{A} \rightarrow \mathrm{B} \mathrm{C}$: store ($\mathrm{B}, \mathrm{C}, \mathrm{j}$) in backpointer for A in $\mathrm{Ch}(\mathrm{i}, \mathrm{k})$.
- analogous to backpointers in HMMs
- Once chart has been filled, enumerate trees recursively by following backpointers, starting at $S \in \operatorname{Ch}(1, \mathrm{n}+1)$.

Let's play a game

- Given a nonterminal symbol, expand it.
- You can take one of two moves:
- expand nonterminal into a sequence of other nontermianls
- use nonterminals S, NP, VP, PP, \ldots or POS tags
- expand nonterminal into a word

Penn Treebank POS tags

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1,2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WPS	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	\#	Pound sign	\#
PDT	Predeterminer	all, both		Left quote	(' or ")
POS	Possessive ending	's		Right quote	(' or '")
PP	Personal pronoun	I, you, he	(Left parenthesis	$([,(, ~\{, ~<) ~$
PP\$	Possessive pronoun	your, one's)	Right parenthesis	($],$, $\},>$)
RB	Adverb	quickly, never		Comma	
RBR	Adverb, comparative	faster		Sentence-final punc	(. ! ?
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(: ; .. --)
RP	Particle	$u p, o f f$			

Some real trees

nltk.corpus.treebank.parsed_sents("wsj_0001.mrg")[0].draw()

Ambiguity

Need to disambiguate: find "correct" parse tree for ambiguous sentence.

How do we identify the "correct" tree? How do we compute it efficiently? (Remember: exponential number of readings.)

Probabilistic CFGs

- A probabilistic context-free grammar (PCFG) is a context-free grammar in which
- each production rule $\mathrm{A} \rightarrow \mathrm{w}$ has a probability $\mathrm{P}(\mathrm{A} \rightarrow \mathrm{w} \mid \mathrm{A})$: when we expand A , how likely is it that we choose $\mathrm{A} \rightarrow \mathrm{w}$?
- for each nonterminal A, probabilities must sum to one:

$$
\sum_{w} P(A \rightarrow w \mid A)=1
$$

- we will write $\mathrm{P}(\mathrm{A} \rightarrow \mathrm{w})$ instead of $\mathrm{P}(\mathrm{A} \rightarrow \mathrm{w} \mid \mathrm{A})$ for short

An example

$\mathrm{S} \rightarrow \mathrm{NP}$ VP	$[1.0]$	$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$	$[0.5]$
$\mathrm{NP} \rightarrow$ Det N	$[0.8]$	$\mathrm{VP} \rightarrow \mathrm{VP} P \mathrm{PP}$	$[0.5]$
$\mathrm{NP} \rightarrow \mathrm{i}$	$[0.2]$	$\mathrm{V} \rightarrow$ shot	$[1.0]$
$\mathrm{N} \rightarrow \mathrm{N} P \mathrm{PP}$	$[0.4]$	$\mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP}$	$[1.0]$
$\mathrm{N} \rightarrow$ elephant	$[0.3]$	$\mathrm{P} \rightarrow$ in	$[1.0]$
$\mathrm{N} \rightarrow$ pyjamas	$[0.3]$	Det \rightarrow an	$[0.5]$
		Det \rightarrow my	$[0.5]$

(let's pretend for simplicity that Det $=$ PRP\$)

Generative process

- PCFG generates random derivations of CFG.
- each event (expand nonterminal by production rule) statistically independent of all the others

$$
\mathrm{S} \stackrel{1.0}{\Rightarrow} \mathrm{NP} \mathrm{VP} \stackrel{0.2}{\Rightarrow} \mathrm{i} \mathrm{VP} \stackrel{0.5}{\Rightarrow} \mathrm{i} \text { VP PP }
$$

$$
\Rightarrow^{*} \text { i shot an elephant in my pyjamas }
$$

$\mathrm{S} \stackrel{1.0}{\Rightarrow} \mathrm{NP}$ VP $\stackrel{0.2}{\Rightarrow} \mathrm{i}$ VP $\stackrel{0.4}{\Rightarrow}{ }^{*} \mathrm{i} V$ Det N
0.00057
$\underset{0.4}{\Rightarrow} \mathrm{i}$ V Det N PP $\Rightarrow^{*} \mathrm{i}$ shot \ldots pyjamas

Parse trees

\uparrow

"correct" = more probable parse tree

Language modeling

- As with other generative models (HMMs!), can define probability $\mathrm{P}(\mathrm{w})$ of string by marginalizing over its possible parses:

$$
P(w)=\sum_{t \in \operatorname{parses}(w)} P(t)
$$

- Can compute this efficiently with inside probabilities, see next time.

Disambiguation

- Assumption: "correct" parse tree = the parse tree that had highest prob of being generated by random process, i.e. $\operatorname{argmax} P(t)$

$$
t \in \operatorname{parses}(\mathrm{w})
$$

- We use a variant of the Viterbi algorithm to compute it.
- Here, Viterbi based on CKY; can do it with other parsing algorithms too.

The intuition

Ordinary CKY parse chart: $\operatorname{Ch}(\mathrm{i}, \mathrm{k})=\left\{\mathrm{A} \mid \mathrm{A} \Rightarrow^{\star} \mathrm{w}_{\mathrm{i}} \ldots \mathrm{w}_{\mathrm{k}-1}\right\}$

The intuition

Viterbi CKY parse chart: $\operatorname{Ch}(i, k)=\left\{(A, p) \mid p=\max _{d: A \Rightarrow w_{i} \cdots w_{k-1}} P(d)\right\}$

Viterbi CKY

- Define for each span (i,k) and each nonterminal A the probability

$$
V(A, i, k)=\max _{\substack{d \stackrel{*}{*} w_{i} \ldots w_{k-1}}} P(d)
$$

- Compute V iteratively "bottom up", i.e. starting from small spans and working our way up to longer spans.

$$
\begin{gathered}
V(A, i, i+1)=P\left(A \rightarrow w_{i}\right) \\
V(A, i, k)=\max _{\substack{A \rightarrow B C \\
i<j<k}} P(A \rightarrow B C) \cdot V(B, i, j) \cdot V(C, j, k)
\end{gathered}
$$

Viterbi CKY - pseudocode

set all V[A,i,j] to 0
for all i from 1 to n :
for all A with rule A -> w_{i} :
add A to $\mathrm{Ch}(\mathrm{i}, \mathrm{i}+1)$
$\mathrm{V}[\mathrm{A}, \mathrm{i}, \mathrm{i}+1]=\mathrm{P}\left(\mathrm{A}->\mathrm{w}_{\mathrm{i}}\right)$
for all b from 2 to n :
for all i from 1 to $n-b+1$:
for all k from 1 to $b-1$:
for all B in $\mathrm{Ch}(\mathrm{i}, \mathrm{i}+\mathrm{k})$ and C in $\mathrm{Ch}(\mathrm{i}+\mathrm{k}, \mathrm{i}+\mathrm{b})$:
for all production rules A -> B C:
add A to $\mathrm{Ch}(\mathrm{i}, \mathrm{i}+\mathrm{b})$
if $P(A->B C)$ * $V[B, i, i+k]$ * V[C,i+k,i+b] > V[A,i,i+b]:
$V[A, i, i+b]=P(A->B C) * V[B, i, i+k] * V[C, i+k, i+b]$

Viterbi-CKY in action

Viterbi CKY parse chart: $\operatorname{Ch}(i, k)=\left\{(A, p) \mid p=\max _{d: A \Rightarrow{ }^{*} w_{i} \ldots w_{k-1}} P(d)\right\}$

Viterbi-CKY in action

Viterbi CKY parse chart: $\operatorname{Ch}(i, k)=\left\{(A, p) \mid p=\max _{d: A \Rightarrow{ }^{*} w_{i} \ldots w_{k-1}} P(d)\right\}$

Viterbi-CKY in action

Viterbi CKY parse chart: $\operatorname{Ch}(i, k)=\left\{(A, p) \mid p=\max _{d: A \Rightarrow{ }^{*} w_{i} \ldots w_{k-1}} P(d)\right\}$

Viterbi-CKY in action

Viterbi CKY parse chart: $\operatorname{Ch}(i, k)=\left\{(A, p) \mid p=\max _{d: A \Rightarrow{ }^{*} w_{i} \ldots w_{k-1}} P(d)\right\}$

Viterbi-CKY in action

Viterbi CKY parse chart: $\operatorname{Ch}(i, k)=\left\{(A, p) \mid p=\max _{d: A \Rightarrow{ }^{*} w_{i} \cdots w_{k-1}} P(d)\right\}$

Viterbi-CKY in action

Viterbi CKY parse chart: $\operatorname{Ch}(i, k)=\left\{(A, p) \mid p=\max _{d: A \Rightarrow{ }^{*} w_{i} \cdots w_{k-1}} P(d)\right\}$

Viterbi-CKY in action

Viterbi CKY parse chart: $\operatorname{Ch}(i, k)=\left\{(A, p) \mid p=\max _{d: A \Rightarrow{ }^{*} w_{i} \cdots w_{k-1}} P(d)\right\}$

Viterbi-CKY in action

Viterbi CKY parse chart: $\operatorname{Ch}(i, k)=\left\{(A, p) \mid p=\max _{d: A{ }^{*} w_{i} \ldots w_{k-1}} P(d)\right\}$

Remarks

- Viterbi CKY has exactly the same nested loops as the ordinary CKY parser.
- computing V in addition to Ch only changes constant factor
- thus asymptotic runtime remains $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Compute optimal parse by storing backpointers.
- same backpointers as in ordinary CKY
- sufficient to store the best backpointer for each ($\mathrm{A}, \mathrm{i}, \mathrm{k}$) if we only care about best parse (and not all parses), i.e. actually uses less memory than ordinary CKY

Obtaining the PCFG

- How to obtain the CFG?
- write by hand
- derive from treebank
- grammar induction from raw text
- How to obtain the rule probabilities once we have the CFG?
- maximum likelihood estimation from treebank
- EM training from raw text (inside-outside algorithm)

The Penn Treebank

- Large (in the mid-90s) quantity of text, annotated with POS tags and syntactic structures.
- Consists of several sub-corpora:
- Wall Street Journal: 1 year of news text, 1 million words
- Brown corpus: balanced corpus, 1 million words
- ATIS: dialogues on flight bookings, 5000 words
- Switchboard: spoken dialogue, 3 million words
- WSJ PTB is standard corpus for training and evaluating PCFG parsers.

Annotation format

That cold, empty sky was full of fire and light.

Annotation format

That cold, empty sky was full of fire and light.

Reading off grammar

- Can directly read off "grammar in annotators' heads" from trees in treebank.
- Yields very large CFG, e.g. 4500 rules for VP:

VP \rightarrow VBD PP
$\mathrm{VP} \rightarrow \mathrm{VBD}$ PP PP
$V P \rightarrow V B D$ PP PP PP
$V P \rightarrow V B D P P$ PP PP PP
$\mathrm{VP} \rightarrow \mathrm{VBD}$ ADVP PP
$\mathrm{VP} \rightarrow \mathrm{VBD}$ PP ADVP
$\mathrm{VP} \rightarrow \mathrm{VBD} P \mathrm{P}$ PP PP PP PP ADVP PP

Reading off grammar

- Can directly read off "grammar in annotators' heads" from trees in treebank.
- Yields very large CFG, e.g. 4500 rules for VP: VP \rightarrow VBD PP $\mathrm{VP} \rightarrow \mathrm{VBD} P \mathrm{PP}$ $\mathrm{VP} \rightarrow \mathrm{VBD} P \mathrm{PP}$ from football in the fall to lifting in the winter to football again in the spring."
 $\mathrm{VP} \rightarrow \mathrm{VBD}$ PP ADVP
$\mathrm{VP} \rightarrow \mathrm{VBD}$ PP PP PP PP PP ADVP PP

Evaluation

- Step 1: Decide on training and test corpus. For WSJ corpus, there is a conventional split by sections:

Evaluation

- Step 2: How should we measure the accuracy of the parser?
- Straightforward idea: Measure "exact match", i.e. proportion of gold standard trees that parser got right.
- This is too strict:
- parser makes many decisions in parsing a sentence
- a single incorrect parsing decision makes tree "wrong"
- want more fine-grained measure

Comparing parse trees

- Idea 2 (PARSEVAL): Compare structure of parse tree and gold standard tree.
- Labeled: Which constituents (span + syntactic category) of one tree also occur in the other?
- Unlabeled: How do the trees bracket the substrings of the sentence (ignoring syntactic categories)?

Precision

What proportion of constituents in parse tree is also present in gold tree?

Labeled Precision $=7 / 11=63.6 \%$
Unlabeled Precision $=10 / 11=90.9 \%$

Recall

What proportion of constituents in gold tree is also present in parse tree?

Labeled Recall $=7 / 9=77.8 \%$
Unlabeled Recall $=8 / 9=88.9 \%$

F-Score

- Precision and recall measure opposing qualities of a parser ("soundness" and "completeness")
- Summarize both together in the f-score:

$$
F_{1}=\frac{2 \cdot P \cdot R}{P+R}
$$

- In the example, we have labeled f-score 70.0 and unlabeled f-score 89.9.

Summary

- PCFGs extend CFGs with rule probabilities.
- Events of random process are nonterminal expansion steps. These are all statistically independent.
- Use Viterbi CKY parser to find most probable parse tree for a sentence in cubic time.
- Read grammars off treebanks.
- next time: learn rule probabilities
- Evaluation of statistical parsers.

