
Context-free Grammars

Computational Linguistics 

Alexander Koller

16 November 2018

Sentences have structure

John ate a sandwich

Sentences have structure

subject predicate object

John ate a sandwich

Sentences have structure

subject predicate object

grammatical functions

John ate a sandwich

Sentences have structure

John ate a sandwich

Sentences have structure

sentence
John ate a sandwich

Sentences have structure

noun

sentence
John ate a sandwich

verb phrase

Sentences have structure

noun

verb

sentence
John ate a sandwich

verb phrase

noun phrase

Sentences have structure

noun

verb

sentence
John ate a sandwich

determiner

verb phrase

noun phrase

Sentences have structure
Record it conveniently in phrase structure tree.

John

ate

NP

V

S

VP

NP

Det

a sandwich

N

Ambiguity
Special challenge: sentences can have many possible structures.

S

NP VP

VP

I

V NP

anshot

PP

P

in

Det N

elephant

NP

my

PRP$ N

pyjamas

S

NP VP

I

V
NP

anshot

PP

P

in

Det

N

elephant

NP

my

PRP$ N

pyjamas

N

This sentence is example of attachment ambiguity.

Grammars

• A grammar is a finite device for describing large
(possibly infinite) set of strings.
‣ strings = NL expressions of various types

‣ grammar captures linguistic knowledge about  
syntactic structure

• There are many different grammar formalisms 
that are being used in NLP.

• In this course we focus on context-free grammars.

Context-free grammars

• Context-free grammar (cfg) G is 4-tuple (N,T,S,P):
‣ N and T are disjoint finite sets of symbols: 

T = terminal symbols; N = nonterminal symbols.

‣ S ∈ N is the start symbol.

‣ P is a finite set of production rules of the form A → w,  
where A is nonterminal and w is a string from (N ∪ T)*.

• Why “context-free”?
‣ Left-hand side of production is a single nonterminal A.

‣ Rule can’t look at context in which A appears.

‣ Context-sensitive grammars can do that.

Example
T = {John, ate, sandwich, a}
N = {S, NP, VP, V, N, Det}; start symbol: S 

Production rules: 
S → NP VP 
NP → Det N 
VP → V NP

V → ate 
NP → John

Det → a 
N → sandwich

John

ate

NP

V

S

VP

NP

Det

a sandwich

N

Some important concepts

• One-step derivation relation ⇒: 
w1 A w2 ⇒ w1 w w2 iff A → w is in P 
(w1, w2, w are strings from (N ∪ T)*)

• Derivation relation ⇒* is reflexive, transitive closure:  
w ⇒* wn if w ⇒ w1 ⇒ ... ⇒ wn (for some n ≥ 0)

• Language L(G) = {w ∈ T* | S ⇒* w}

Derivations and parse trees
Parse tree provides readable, high-level view of derivation.

John

ate

NP

V

S

VP

NP

Det

a sandwich

N

derivation

S ⇒ NP VP ⇒ John VP
⇒ John V NP ⇒ John ate NP
⇒ John ate Det N
⇒ John ate a N
⇒ John ate a sandwich

parse tree

Big languages
Number of parse trees can grow exponentially in string length.

S → S S S → a

a

S S

S

a a

S

S

a

S S

S

a a

S

S

Recognition and parsing

• Let G be a cfg and w be a string.

• Word problem: is w ∈ L(G)?
‣ Algorithms that solve it are called recognizers.

• Parsing problem: enumerate all parse trees of w.
‣ Algorithms that solve it are called parsers.

• Every parser also solves the word problem.

Parsing algorithms

• How can we solve the word and parsing problem so
systematically that we can implement it?

• One simple approach: shift-reduce algorithm  
(here: only for the word problem).

• Next time: Analyze efficiency of SR and replace it
with faster algorithm: CKY.

Shift-Reduce Parsing
T = {John, ate, sandwich, a}
N = {S, NP, VP, V, N, Det}; start symbol: S 

Production rules: 
S → NP VP 
NP → Det N

V → ate 
NP → John

Det → a 
N → sandwich

 
VP → V NP

John ate a sandwich

Shift-Reduce Parsing
T = {John, ate, sandwich, a}
N = {S, NP, VP, V, N, Det}; start symbol: S 

Production rules: 
S → NP VP 
NP → Det N

V → ate 
NP → John

Det → a 
N → sandwich

 
VP → V NP

John ate a sandwich

ate a sandwich John

sh
ift

Shift-Reduce Parsing
T = {John, ate, sandwich, a}
N = {S, NP, VP, V, N, Det}; start symbol: S 

Production rules: 
S → NP VP 
NP → Det N

V → ate 
NP → John

Det → a 
N → sandwich

 
VP → V NP

John ate a sandwich

ate a sandwich John

ate a sandwich NP

sh
ift

re
du

ce

Shift-Reduce Parsing
T = {John, ate, sandwich, a}
N = {S, NP, VP, V, N, Det}; start symbol: S 

Production rules: 
S → NP VP 
NP → Det N

V → ate 
NP → John

Det → a 
N → sandwich

 
VP → V NP

John ate a sandwich

ate a sandwich John

ate a sandwich NP

a sandwich NP ate

sh
ift

re
du

ce
sh

ift

Shift-Reduce Parsing
T = {John, ate, sandwich, a}
N = {S, NP, VP, V, N, Det}; start symbol: S 

Production rules: 
S → NP VP 
NP → Det N

V → ate 
NP → John

Det → a 
N → sandwich

 
VP → V NP

John ate a sandwich

ate a sandwich John

ate a sandwich NP

a sandwich NP ate

a sandwich NP V

sh
ift

re
du

ce
sh

ift
re

du
ce

Shift-Reduce Parsing
T = {John, ate, sandwich, a}
N = {S, NP, VP, V, N, Det}; start symbol: S 

Production rules: 
S → NP VP 
NP → Det N

V → ate 
NP → John

Det → a 
N → sandwich

 
VP → V NP

John ate a sandwich

ate a sandwich John

ate a sandwich NP

a sandwich NP ate

a sandwich NP V

ε NP V Det N

…

sh
ift

re
du

ce
sh

ift
re

du
ce

Shift-Reduce Parsing
T = {John, ate, sandwich, a}
N = {S, NP, VP, V, N, Det}; start symbol: S 

Production rules: 
S → NP VP 
NP → Det N

V → ate 
NP → John

Det → a 
N → sandwich

 
VP → V NP

John ate a sandwich

ate a sandwich John

ate a sandwich NP

a sandwich NP ate

a sandwich NP V

ε

ε

NP V Det N

NP V NP

…

sh
ift

re
du

ce
sh

ift
re

du
ce

re
du

ce

Shift-Reduce Parsing
T = {John, ate, sandwich, a}
N = {S, NP, VP, V, N, Det}; start symbol: S 

Production rules: 
S → NP VP 
NP → Det N

V → ate 
NP → John

Det → a 
N → sandwich

 
VP → V NP

John ate a sandwich

ate a sandwich John

ate a sandwich NP

a sandwich NP ate

a sandwich NP V

ε

ε

ε

NP V Det N

NP V NP

NP VP

…

sh
ift

re
du

ce
sh

ift
re

du
ce

re
du

ce
re

du
ce

Shift-Reduce Parsing
T = {John, ate, sandwich, a}
N = {S, NP, VP, V, N, Det}; start symbol: S 

Production rules: 
S → NP VP 
NP → Det N

V → ate 
NP → John

Det → a 
N → sandwich

 
VP → V NP

John ate a sandwich

ate a sandwich John

ate a sandwich NP

a sandwich NP ate

a sandwich NP V

ε

ε

ε

ε

NP V Det N

NP V NP

NP VP

S

…

sh
ift

re
du

ce
sh

ift
re

du
ce

re
du

ce
re

du
ce

re
du

ce

Shift-Reduce Parsing

• Read input string step by step. In each step, we have
‣ the remaining input words we have not shifted yet

‣ a stack of terminal and nonterminal symbols

• In each step, apply a rule:
‣ Shift: moves the next input word to the top of the stack

‣ Reduce: applies a production rule to replace top of stack
with the nonterminal on the left-hand side

• Sentence is in language of cfg iff we can read the
whole string and stack contains only start symbol.

Shift-Reduce Parsing

• Shift rule: 
(s, a⋅w) → (s⋅a, w)

• Reduce rule: 
(s⋅w’, w) → (s⋅A, w) if A → w’ in P

• Start: (ε, w)

• Apply rules nondeterministically: 
Claim w ∈ L(G) if there exists some sequence of steps
that derive (S, ε) from (ε, w).

Nondeterminism

• Claim that string is in language of cfg iff (S, ε) 
can be derived by any sequence of shift and reduce
steps.

• This is very important because there are many  
stack-string pairs where multiple rules can be applied:
‣ shift-reduce conflict

‣ reduce-reduce conflict

• In practice, we need to try all sequences out.
‣ Compilers for programming languages avoid this by careful

language design: no ambiguity in grammar.

Parsing Schemata

• Parsing algorithm derives claims about the string.  
Record such claims in parse items.

• At each step, apply a parsing rule to infer new parse
items from earlier ones.

• If there is a way to derive a goal item from the start
item(s) for a given input string, then claim that this
string is in the language.

Shieber

Schema for shift-reduce

• Items are of the form (s,w’) where w’ is a suffix of
the input string w, and s is the stack.
‣ Claim of this item: Underlying cfg allows the derivation 

s w’ ⇒* w

• Start item: (ε, w); goal item: (S, ε)

• Parsing rules:
(s, a ⋅ w’)

(s ⋅ a, w’)
(shift)

(s ⋅ s’, w’) A → s’ in P

(s ⋅ A, w’)
(reduce)

Implementing schemas

• Can generally implement parser for given schema in
the following way:
‣ maintain an agenda: queue of items that we have discovered,

but not yet attempted to combine with other items

‣ maintain a chart of all seen items for the sentence

rules of parsing  
schema used here

initialize chart and agenda with all start items

while agenda not empty:
 item = dequeue(agenda)
 for each combination c of item with other item in the chart:
 if c not in chart:
 add c to chart
 enqueue c in agenda

if chart contains a goal item, claim w ∈ L(G)

Implementing schemas

• Can generally implement parser for given schema in
the following way:
‣ maintain an agenda: queue of items that we have discovered,

but not yet attempted to combine with other items

‣ maintain a chart of all seen items for the sentence

rules of parsing  
schema used here

initialize chart and agenda with all start items

while agenda not empty:
 item = dequeue(agenda)
 for each combination c of item with other item in the chart:
 if c not in chart:
 add c to chart
 enqueue c in agenda

if chart contains a goal item, claim w ∈ L(G)

essential to do  
this efficiently

Correctness of shift-reduce

• Why should we believe that the SR parser always
makes correct claims about the word problem?

• To convince ourselves, we need to prove:
‣ soundness: SR recognizer only claims w ∈ L(G) 

if this is true;

‣ completeness: if w ∈ L(G) is true, then SR recognizer claims
it is.

Soundness

• Show: If SR recognizer claims w ∈ L(G), then it is true.

• Prove by induction over derivation length k that all
items that are being derived are true.
‣ k = 0: Item is start item (ε, w). This is trivially true.

‣ k → k+1: Any derivation of k+1 steps ends in a last step.
- Shift: (ε, w) →* (s, a w’) → (s a, w’). 

By induction hypothesis, (s, a w’) is true, i.e. s a w’ ⇒* w. 
Thus, (s a, w’) is obviously true as well.

- Reduce: (ε, w) →* (s s’, w’) → (s A, w’). 
By induction hypothesis, (s s’, w’) is true, i.e. s s’ w’ ⇒* w. 
Thus we have s A w’ ⇒ s s’ w’ ⇒* w, i.e. (s A, w’) is true.

Completeness

• Show: If w ∈ L(G), then SR recognizer claims it is true.

• Prove by induction over length of CFG derivation that
if A ⇒* wi … wk, then (ε, wi … wk) →* (A, ε).

‣ length = 1: one shift + one reduce does it

‣ length k → k+1: A ⇒ B C ⇒* wi … wj-1 wj … wk 
 
 
Then by induction hypothesis, can derive 
(ε, wi … wk) →* (B, wj … wk) →* (BC, ε) → (A, ε)

SR

SR SR R

((

B C

Conclusion

• Context-free grammars: most popular grammar
formalism in NLP.

• Parsing algorithms.
‣ today, shift-reduce

‣ next time, CKY

• Outlook:
‣ combine CFG parsing with statistics

‣ more expressive grammar formalisms

