Context-free Grammars

Computational Linguistics

Alexander Koller

16 November 2018

Sentences have structure

John ate a sandwich

Sentences have structure

Sentences have structure

Sentences have structure

John ate a sandwich

Sentences have structure

Sentences have structure

Sentences have structure

Sentences have structure

Sentences have structure

Record it conveniently in phrase structure tree.

Ambiguity

Special challenge: sentences can have many possible structures.

This sentence is example of attachment ambiguity.

Grammars

- A grammar is a finite device for describing large (possibly infinite) set of strings.
- strings = NL expressions of various types
- grammar captures linguistic knowledge about syntactic structure
- There are many different grammar formalisms that are being used in NLP.
- In this course we focus on context-free grammars.

Context-free grammars

- Context-free grammar (cfg) G is 4-tuple (N,T,S,P):
- N and T are disjoint finite sets of symbols: $\mathrm{T}=$ terminal symbols; $\mathrm{N}=$ nonterminal symbols.
- $\mathrm{S} \in \mathrm{N}$ is the start symbol.
- P is a finite set of production rules of the form $\mathrm{A} \rightarrow \mathrm{w}$, where A is nonterminal and w is a string from $(N \cup T)^{*}$.
- Why "context-free"?
- Left-hand side of production is a single nonterminal A.
- Rule can't look at context in which A appears.
- Context-sensitive grammars can do that.

Example

$\mathrm{T}=\{$ John, ate, sandwich, a $\}$
$\mathrm{N}=\{\mathrm{S}, \mathrm{NP}, \mathrm{VP}, \mathrm{V}, \mathrm{N}$, Det $\} ;$ start symbol: S

Production rules:
$\mathrm{S} \rightarrow \mathrm{NP}$ VP
$\mathrm{V} \rightarrow$ ate
NP \rightarrow Det N
NP \rightarrow John
Det \rightarrow a
$\mathrm{N} \rightarrow$ sandwich
$\mathrm{VP} \rightarrow \mathrm{V}$ NP

Some important concepts

- One-step derivation relation \Rightarrow :
$\mathrm{w}_{1} \mathrm{~A} \mathrm{w}_{2} \Rightarrow \mathrm{w}_{1} \mathrm{~W}_{\mathrm{w}}^{2}$ iff $\mathrm{A} \rightarrow \mathrm{w}$ is in P $\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}\right.$ are strings from $\left.(\mathrm{N} \cup \mathrm{T})^{*}\right)$
- Derivation relation \Rightarrow^{*} is reflexive, transitive closure: $\mathrm{w} \Rightarrow{ }^{*} \mathrm{w}_{\mathrm{n}}$ if $\mathrm{w} \Rightarrow \mathrm{w}_{\mathrm{l}} \Rightarrow \ldots \Rightarrow \mathrm{w}_{\mathrm{n}}($ for some $\mathrm{n} \geq 0)$
- Language $\mathrm{L}(\mathrm{G})=\left\{\mathrm{w} \in \mathrm{T}^{*} \mid \mathrm{S} \Rightarrow^{*} \mathrm{w}\right\}$

Derivations and parse trees

Parse tree provides readable, high-level view of derivation.

derivation

$$
\begin{aligned}
\mathrm{S} & \Rightarrow \text { NP VP } \Rightarrow \text { John VP } \\
& \Rightarrow \text { John V NP } \Rightarrow \text { John ate NP } \\
& \Rightarrow \text { John ate Det N } \\
& \Rightarrow \text { John ate a N } \\
& \Rightarrow \text { John ate a sandwich }
\end{aligned}
$$

parse tree

Big languages

Number of parse trees can grow exponentially in string length.

$$
S \rightarrow S S \quad S \rightarrow a
$$

Recognition and parsing

- Let G be a cfg and w be a string.
- Word problem: is $\mathrm{w} \in \mathrm{L}(\mathrm{G})$?
- Algorithms that solve it are called recognizers.
- Parsing problem: enumerate all parse trees of w.
- Algorithms that solve it are called parsers.
- Every parser also solves the word problem.

Parsing algorithms

- How can we solve the word and parsing problem so systematically that we can implement it?
- One simple approach: shift-reduce algorithm (here: only for the word problem).
- Next time: Analyze efficiency of SR and replace it with faster algorithm: CKY.

Shift-Reduce Parsing

$$
\begin{aligned}
& \mathrm{T}=\{\text { John, ate, sandwich, a }\} \\
& \mathrm{N}=\{\mathrm{S}, \mathrm{NP}, \mathrm{VP}, \mathrm{~V}, \mathrm{~N}, \text { Det }\} ; \text { start symbol: } \mathrm{S}
\end{aligned}
$$

Production rules:

$\mathrm{S} \rightarrow \mathrm{NP}$ VP	$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$	$\mathrm{V} \rightarrow$ ate
$\mathrm{NP} \rightarrow$ Det N		NP \rightarrow John

John ate a sandwich

Shift-Reduce Parsing

$$
\begin{aligned}
& \mathrm{T}=\{\text { John, ate, sandwich, a }\} \\
& \mathrm{N}=\{\mathrm{S}, \mathrm{NP}, \mathrm{VP}, \mathrm{~V}, \mathrm{~N}, \text { Det }\} ; \text { start symbol: } \mathrm{S}
\end{aligned}
$$

Production rules:

$\mathrm{S} \rightarrow \mathrm{NP}$ VP	$\mathrm{VP} \rightarrow \mathrm{V}$ NP	$\mathrm{V} \rightarrow$ ate	Det \rightarrow a
$\mathrm{NP} \rightarrow$ Det N		NP \rightarrow John	$\mathrm{N} \rightarrow$ sandwich

$\stackrel{\square}{\text { John ate a sandwich }}$| \square | |
| :--- | :--- |
| ate a sandwich | $\boxed{J o h n}$ |

Shift-Reduce Parsing

$$
\begin{aligned}
& \mathrm{T}=\{\text { John, ate, sandwich, a }\} \\
& \mathrm{N}=\{\mathrm{S}, \mathrm{NP}, \mathrm{VP}, \mathrm{~V}, \mathrm{~N}, \text { Det }\} ; \text { start symbol: } \mathrm{S}
\end{aligned}
$$

Production rules:

$\mathrm{S} \rightarrow \mathrm{NP}$ VP	$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$	$\mathrm{V} \rightarrow$ ate
$\mathrm{NP} \rightarrow$ Det N		NP \rightarrow John

Shift-Reduce Parsing

$$
\begin{aligned}
& \mathrm{T}=\{\text { John, ate, sandwich, a }\} \\
& \mathrm{N}=\{\mathrm{S}, \mathrm{NP}, \mathrm{VP}, \mathrm{~V}, \mathrm{~N}, \text { Det }\} ; \text { start symbol: } \mathrm{S}
\end{aligned}
$$

Production rules:

$\mathrm{S} \rightarrow \mathrm{NP}$ VP	$\mathrm{VP} \rightarrow \mathrm{V}$ NP	$\mathrm{V} \rightarrow$ ate	Det \rightarrow a
NP \rightarrow Det N		NP \rightarrow John	$\mathrm{N} \rightarrow$ sandwich

$\left[\begin{array}{l} \text { John ate a sandwich } \\ \text { ate a sandwich } \end{array}\right.$		
	John	
\rightarrow ate a sandwich	NP	
\rightarrow a sandwich	NP	ate

Shift-Reduce Parsing

$$
\begin{aligned}
& \mathrm{T}=\{\text { John, ate, sandwich, a }\} \\
& \mathrm{N}=\{\mathrm{S}, \mathrm{NP}, \mathrm{VP}, \mathrm{~V}, \mathrm{~N}, \text { Det }\} ; \text { start symbol: } \mathrm{S}
\end{aligned}
$$

Production rules:

$\mathrm{S} \rightarrow$ NP VP	$\mathrm{VP} \rightarrow \mathrm{V}$ NP	$\mathrm{V} \rightarrow$ ate	Det \rightarrow a
$\mathrm{NP} \rightarrow$ Det N		NP \rightarrow John	$\mathrm{N} \rightarrow$ sandwich

[ohn ate a sandwich		
\rightarrow ate a sandwich	NP	
$\stackrel{\square}{\square}{ }^{\text {a sandwich }}$	NP	ate
\rightarrow a sandwich	NP	V

Shift-Reduce Parsing

$$
\begin{aligned}
& \mathrm{T}=\{\text { John, ate, sandwich, a }\} \\
& \mathrm{N}=\{\mathrm{S}, \mathrm{NP}, \mathrm{VP}, \mathrm{~V}, \mathrm{~N}, \text { Det }\} ; \text { start symbol: } \mathrm{S}
\end{aligned}
$$

Production rules:

$\mathrm{S} \rightarrow$ NP VP	$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$	$\mathrm{V} \rightarrow$ ate
$\mathrm{NP} \rightarrow$ Det N		$\mathrm{NP} \rightarrow$ John
	$\mathrm{N} \rightarrow$ sandwich	

Shift-Reduce Parsing

$$
\begin{aligned}
& \mathrm{T}=\{\text { John, ate, sandwich, a }\} \\
& \mathrm{N}=\{\mathrm{S}, \mathrm{NP}, \mathrm{VP}, \mathrm{~V}, \mathrm{~N}, \text { Det }\} ; \text { start symbol: } \mathrm{S}
\end{aligned}
$$

Production rules:

$\mathrm{S} \rightarrow \mathrm{NP}$ VP	$\mathrm{VP} \rightarrow \mathrm{V}$ NP	$\mathrm{V} \rightarrow$ ate	Det \rightarrow a
$\mathrm{NP} \rightarrow$ Det N		NP \rightarrow John	$\mathrm{N} \rightarrow$ sandwich

Shift-Reduce Parsing

$$
\begin{aligned}
& \mathrm{T}=\{\text { John, ate, sandwich, a }\} \\
& \mathrm{N}=\{\mathrm{S}, \mathrm{NP}, \mathrm{VP}, \mathrm{~V}, \mathrm{~N}, \text { Det }\} ; \text { start symbol: } \mathrm{S}
\end{aligned}
$$

Production rules:

| $\mathrm{S} \rightarrow$ NP VP | $\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$ | $\mathrm{V} \rightarrow$ ate |
| :--- | :--- | :--- |\quad Det $\rightarrow \mathrm{a}, ~ \mathrm{NP} \rightarrow$ John $\quad \mathrm{N} \rightarrow$ sandwich

Shift-Reduce Parsing

$$
\begin{aligned}
& \mathrm{T}=\{\text { John, ate, sandwich, } \mathrm{a}\} \\
& \mathrm{N}=\{\mathrm{S}, \mathrm{NP}, \mathrm{VP}, \mathrm{~V}, \mathrm{~N}, \text { Det }\} ; \text { start symbol: } \mathrm{S}
\end{aligned}
$$

Production rules:

| $\mathrm{S} \rightarrow$ NP VP | $\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$ | $\mathrm{V} \rightarrow$ ate |
| :--- | :--- | :--- |\quad Det $\rightarrow \mathrm{a}, ~ \mathrm{NP} \rightarrow$ John $\quad \mathrm{N} \rightarrow$ sandwich

Shift-Reduce Parsing

- Read input string step by step. In each step, we have
- the remaining input words we have not shifted yet
- a stack of terminal and nonterminal symbols
- In each step, apply a rule:
- Shift: moves the next input word to the top of the stack
- Reduce: applies a production rule to replace top of stack with the nonterminal on the left-hand side
- Sentence is in language of cfg iff we can read the whole string and stack contains only start symbol.

Shift-Reduce Parsing

- Shift rule:
$(s, a \cdot w) \rightarrow(s \cdot a, w)$
- Reduce rule:
$\left(s \cdot w^{\prime}, w\right) \rightarrow(s \cdot A, w)$ if $A \rightarrow w^{\prime}$ in P
- Start: (ε, w)
- Apply rules nondeterministically:

Claim $\mathrm{w} \in \mathrm{L}(\mathrm{G})$ if there exists some sequence of steps that derive (S, ε) from (ε, w).

Nondeterminism

- Claim that string is in language of cfg iff (S, ε) can be derived by any sequence of shift and reduce steps.
- This is very important because there are many stack-string pairs where multiple rules can be applied:
- shift-reduce conflict
- reduce-reduce conflict
- In practice, we need to try all sequences out.
- Compilers for programming languages avoid this by careful language design: no ambiguity in grammar.

Parsing Schemata

- Parsing algorithm derives claims about the string. Record such claims in parse items.
- At each step, apply a parsing rule to infer new parse items from earlier ones.
- If there is a way to derive a goal item from the start item(s) for a given input string, then claim that this string is in the language.

Schema for shift-reduce

- Items are of the form (s, w^{\prime}) where w^{\prime} is a suffix of the input string w , and s is the stack.
- Claim of this item: Underlying cfg allows the derivation s w ${ }^{\prime}{ }^{*}$ w
- Start item: $(\varepsilon, \mathrm{w})$; goal item: $(\mathrm{S}, \varepsilon)$
- Parsing rules:

$$
\frac{\left(s, a \cdot w^{\prime}\right)}{\left(s \cdot a, w^{\prime}\right)}(s h i f t)
$$

$$
\frac{\left(s \cdot s^{\prime}, w^{\prime}\right) \quad A \rightarrow s^{\prime} \text { in } P}{\left(s \cdot A, w^{\prime}\right)} \text { (reduce) }
$$

Implementing schemas

- Can generally implement parser for given schema in the following way:
- maintain an agenda: queue of items that we have discovered, but not yet attempted to combine with other items
- maintain a chart of all seen items for the sentence

```
initialize chart and agenda with all start items
while agenda not empty:
    item = dequeue(agenda)
    for each combination c of item with other item in the chart:
            if c not in chart:
                add c to chart
                enqueue c in agenda
if chart contains a goal item, claim w \in L(G)
```


Implementing schemas

- Can generally implement parser for given schema in the following way:
- maintain an agenda: queue of items that we have discovered, but not yet attempted to combine with other items
- maintain a chart of all seen items for the sentence

Correctness of shift-reduce

- Why should we believe that the SR parser always makes correct claims about the word problem?
- To convince ourselves, we need to prove:
- soundness: SR recognizer only claims $\mathrm{w} \in \mathrm{L}(\mathrm{G})$ if this is true;
- completeness: if $\mathrm{w} \in \mathrm{L}(\mathrm{G})$ is true, then SR recognizer claims it is.

Soundness

- Show: If SR recognizer claims $w \in L(G)$, then it is true.
- Prove by induction over derivation length k that all items that are being derived are true.
- $\mathrm{k}=0$: Item is start item $(\varepsilon, \mathrm{w})$. This is trivially true.
- $\mathrm{k} \rightarrow \mathrm{k}+1$: Any derivation of $\mathrm{k}+1$ steps ends in a last step.
- Shift: $(\varepsilon, \mathrm{w}) \rightarrow^{*}\left(\mathrm{~s}, \mathrm{a} \mathrm{w}^{\prime}\right) \rightarrow\left(\mathrm{s} \mathrm{a}, \mathrm{w}^{\prime}\right)$.

By induction hypothesis, (s, a w') is true, i.e. sa $w^{\prime} \Rightarrow^{*}$ w.
Thus, ($\mathrm{s} a, \mathrm{w}$) is obviously true as well.

- Reduce: $(\varepsilon, \mathrm{w}) \rightarrow^{\star}\left(\mathrm{s} \mathrm{s}{ }^{\prime}, \mathrm{w}^{\prime}\right) \rightarrow\left(\mathrm{s} \mathrm{A}, \mathrm{w}^{\prime}\right)$.

By induction hypothesis, ($s s^{\prime}, w^{\prime}$) is true, i.e. $s s^{\prime} w^{\prime} \Rightarrow^{*}$ w.
Thus we have $\mathrm{s} A \mathrm{w}^{\prime} \Rightarrow \mathrm{s} \mathrm{s} \mathrm{s}^{\prime} \mathrm{w}^{\prime} \Rightarrow^{*}$ w, i.e. (s A, w') is true.

Completeness

- Show: If $w \in L(G)$, then $S R$ recognizer claims it is true.
- Prove by induction over length of CFG derivation that if $A \Rightarrow^{*} W_{i} \ldots W_{k}$, then $\left(\varepsilon, W_{i} \ldots W_{k}\right) \overrightarrow{S R}^{*}(A, \varepsilon)$.
- length $=1$: one shift + one reduce does it
- length $\mathrm{k} \rightarrow \mathrm{k}+1: \mathrm{A} \Rightarrow \mathrm{BC} \Rightarrow^{*} \underbrace{\mathrm{w}_{\mathrm{i}} \ldots \mathrm{w}_{\mathrm{j}-1}}_{\mathrm{B}} \underbrace{\mathrm{w}_{\mathrm{j}} \ldots \mathrm{w}_{\mathrm{k}}}_{\mathrm{C}}$

Then by induction hypothesis, can derive
$\left(\varepsilon, w_{i} \ldots W_{k}\right) \underset{\operatorname{SR}}{\rightarrow^{*}}\left(\mathrm{~B}, \mathrm{w}_{\mathrm{j}} \ldots \mathrm{w}_{\mathrm{k}}\right)_{\mathrm{SR}}^{\rightarrow^{*}}(\mathrm{BC}, \varepsilon) \underset{\mathrm{R}}{\rightarrow}(\mathrm{A}, \varepsilon)$

Conclusion

- Context-free grammars: most popular grammar formalism in NLP.
- Parsing algorithms.
- today, shift-reduce
- next time, CKY
- Outlook:
- combine CFG parsing with statistics
- more expressive grammar formalisms

