Context-free Grammars

Computational Linguistics

Alexander Koller

16 November 2018

Sentences have structure

John ate a sandwich

Sentences have structure

subject predicate object

N/

John ate 'a sandwich

Sentences have structure

grammatical functions

subject predicate object

John ate 'a sandwich

Sentences have structure

John ate a sandwich

Sentences have structure

sentence

John ate a sandwich

Sentences have structure

sentence

ate a sandwich

John ‘

Sentences have structure

sentence

John ‘

‘ ate || a sandwich

Sentences have structure

sentence

John ‘

‘ate ‘a sandwich

Sentences have structure

Record it conveniently in phrase structure tree.

S
NP VP
IoLn Vv NP

ate Det N

a sandwich

Ambiguity

Special challenge: sentences can have many possible structures.

|

NP/ S\ Det/\N

L~

D(\N PRg\ PRm
| |
shot an elepLant in my py]amas I shot an elephant in my pyjamas

This sentence is example of attachment ambiguity.

Grammars

A grammar is a finite device for describing large
(possibly infinite) set of strings.

» strings = NL expressions of various types

» grammar captures linguistic knowledge about
syntactic structure

There are many different grammar formalisms
that are being used in NLP.

In this course we focus on context-free grammars.

Context-free grammars

o Context-free grammar (cfg) G is 4-tuple (N, T,S,P):

» N and T are disjoint finite sets of symbols:
T = terminal symbols; N = nonterminal symbols.

» S e N is the start symbol.

» P is a finite set of production rules of the form A > w,
where A is nonterminal and w is a string from (N u T)*.

e Why “context-free”?

» Left-hand side of production is a single nonterminal A.
» Rule can't look at context in which A appears.

» Context-sensitive grammars can do that.

Example

T = {John, ate, sandwich, a}
N ={S, NP, VB, V, N, Det}; start symbol: S

Production rules:
S>NP VP
NP > Det N
VP > V NP

V > ate
NP - John

Det > a
N - sandwich

\Y NP

ate Det N

a sandwich

Some important concepts

o One-step derivation relation =
wiAw,=wiww;y it A>wisinP

(w1, w2, w are strings from (N u T)*)

e Derivation relation =~ is reflexive, transitive closure:

w = wyhif w = w; = ... = w;, (for somen > 0)

e Language L(G) ={we T*|S =* w}

Derivations and parse trees

Parse tree provides readable, high-level view of derivation.

derivation parse tree
S
S = NP VP = John VP NP/\VP
= John V NP = John ate NP
John ate Det N]oLn \Y% NP

o , ate Det N
John ate a sandwich | |

=
= John atea N |
=

a sandwich

Big languages

Number of parse trees can grow exponentially in string length.

S/S\S AN\
AN AN
| | | |

Recognition and parsing

Let G be a cfg and w be a string.

Word problem: is w € L(G)?

» Algorithms that solve it are called recognizers.

Parsing problem: enumerate all parse trees of w.

» Algorithms that solve it are called parsers.

Every parser also solves the word problem.

Parsing algorithms

e How can we solve the word and parsing problem so
systematically that we can implement it?

e One simple approach: shift-reduce algorithm
(here: only for the word problem).

e Next time: Analyze efliciency of SR and replace it
with faster algorithm: CKY.

Shift-Reduce Parsing

T = {John, ate, sandwich, a}
N ={S, NP, VB, V, N, Det}; start symbol: S

Production rules:
S> NP VP VP>V NP V > ate Det > a
NP > Det N NP - John N - sandwich

John ate a sandwich |:

Shift-Reduce Parsing

T = {John, ate, sandwich, a}
N ={S, NP, VB, V, N, Det}; start symbol: S

Production rules:
S> NP VP VP>V NP V > ate Det > a
NP > Det N NP - John N - sandwich

—John ate a sandwich |:

shift

> ate a sandwich ‘ John

Shift-Reduce Parsing

T = {John, ate, sandwich, a}
N ={S, NP, VB, V, N, Det}; start symbol: S

Production rules:
S> NP VP VP>V NP V > ate Det > a
NP > Det N NP - John N - sandwich

—John ate a sandwich |:

> ate a sandwich ‘ John

reduce shift

> ate a sandwich ‘ NP

Shift-Reduce Parsing

T = {John, ate, sandwich, a}
N ={S, NP, VB, V, N, Det}; start symbol: S

Production rules:
S> NP VP VP>V NP V > ate Det > a
NP > Det N NP - John N - sandwich

—John ate a sandwich |:
E
_ =ate a sandwich ‘ John
@)
&
; > ate a sandwich ‘ NP
-~

> a sandwich ‘ NP ‘ ate

Shift-Reduce Parsing

T = {John, ate, sandwich, a}
N ={S, NP, VB, V, N, Det}; start symbol: S

Production rules:
S> NP VP VP>V NP V > ate Det > a
NP > Det N NP - John N - sandwich

—John ate a sandwich ‘
=
£
_ =ate a sandwich ‘ John
=
85
* L ate a sandwich ‘ NP
+
=
(/)]
_za sandwich ‘ NP‘ ate
=
o
o

> a sandwich ‘ NP ‘ \Y/

Shift-Reduce Parsing

T = {John, ate, sandwich, a}
N ={S, NP, VB, V, N, Det}; start symbol: S

Production rules:
S> NP VP VP>V NP V > ate Det > a
NP > Det N NP - John N - sandwich

. —John ate a sandwich |:

[

. ~atea sandwich ‘ John g ‘ NP‘ V ‘ Det ‘ N
% _

= b ate a sandwich ‘ NP

E

. za sandwich ‘ NP‘ ate

> a sandwich ‘ NP ‘ \Y/

Shift-Reduce Parsing

T = {John, ate, sandwich, a}
N ={S, NP, VB, V, N, Det}; start symbol: S

Production rules:
S> NP VP VP > V NP V > ate Det > a
NP > Det N NP - John N - sandwich

. —]John ate a sandwich |:

-~

: > ate a sandwich ‘ John T ‘ NP‘ V ‘ Det ‘ N
= 5 '

E > ate a sandwich ‘ NP E > ¢ ‘ NP‘ V ‘ NP

. za sandwich ‘ NP‘ ate

=

o

> a sandwich ‘ NP ‘ \Y/

Shift-Reduce Parsing

T = {John, ate, sandwich, a}
N ={S, NP, VB, V, N, Det}; start symbol: S

Production rules:
S> NP VP VP > V NP V > ate Det > a
NP > Det N NP - John N - sandwich

. —John ate a sandwich |:

-~

: > ate a sandwich ‘ John o =€ ‘ NP‘ V ‘ Det ‘ N
= = '

E > ate a sandwich ‘ NP ? > ¢ ‘ NP‘ V ‘ NP

. za sandwich ‘ NP‘ ate E > £ ‘ NP‘ VP

=

o

> a sandwich ‘ NP ‘ \Y/

Shift-Reduce Parsing

T = {John, ate, sandwich, a}
N ={S, NP, VB, V, N, Det}; start symbol: S

Production rules:
S> NP VP VP>V NP V - ate
NP > Det N NP - John

—John ate a sandwich |:

+
<
_ =ate a sandwich ‘ John > o
: :
a o) o
o . o

> ate a sandwich ‘ NP > ¢
& T
_za sandwich ‘ NP ‘ ate =L e
: :
o a o)
o - L

> a sandwich ‘ NP ‘ V > ¢

Det > a
N = sandwich

[NP]V]Det [N

\NP\V]NP

| NP| VP

s

Shift-Reduce Parsing

Read input string step by step. In each step, we have

» the remaining input words we have not shifted yet

» a stack of terminal and nonterminal symbols

In each step, apply a rule:
» Shift: moves the next input word to the top of the stack

» Reduce: applies a production rule to replace top of stack
with the nonterminal on the left-hand side

Sentence is in language of cfg iff we can read the
whole string and stack contains only start symbol.

Shift-Reduce Parsing

Shift rule:
(s,a-w)>(s-a, w)

Reduce rule:
(sw,w)=>(s*A,w)if A>w inP

Start: (¢, w)

Apply rules nondeterministically:
Claim w € L(G) if there exists some sequence of steps
that derive (S, €) from (&, w).

Nondeterminism

Claim that string is in language of cfg iff (S, €)
can be derived by any sequence of shift and reduce
steps.

This is very important because there are many
stack-string pairs where multiple rules can be applied:

» shift-reduce conflict

» reduce-reduce conflict

In practice, we need to try all sequences out.

» Compilers for programming languages avoid this by careful
language design: no ambiguity in grammar.

Parsing Schemata ﬁ
o

e A
S%lieber

e Parsing algorithm derives claims about the string.
Record such claims in parse items.

o At each step, apply a parsing rule to infer new parse
items from earlier ones.

o If there is a way to derive a goal item from the start
item(s) for a given input string, then claim that this
string is in the language.

Schema for shift-reduce

[tems are of the form (s,w’) where w’ is a suffix of
the input string w, and s is the stack.

» Claim of this item: Underlying cfg allows the derivation
SW =*w

Start item: (&, w); goal item: (S, €)

Parsing rules:

(s,a - w) (s-ssw) A->sinP
(shift) (reduce)
(s-a,w) (s - A, W)

Implementing schemas

e Can generally implement parser for given schema in
the following way:

» maintain an agenda: queue of items that we have discovered,
but not yet attempted to combine with other items

» maintain a chart of all seen items for the sentence

|
initialize chart and agenda with all start items rules Ofparsingj
e

schema used her
B

while agenda not empty:
1tem = dequeue(agenda)
for each combination c of item with other item in the chart:
1f ¢ not in chart:
add ¢ to chart
enqueue C 1nh agenda

1f chart contains a goal item, claim w € L(G)

Implementing schemas

e Can generally implement parser for given schema in
the following way:

» maintain an agenda: queue of items that we have discovered,
but not yet attempted to combine with other items

» maintain a chart of all seen items for the sentence

|
initialize chart and agenda with all start items rules Ofparsingj
e

schema used her

T

while agenda not empty:
1tem = dequeue(agenda)
for each combination c of item with other item in the chart:
1f ¢ not in chart:

add ¢ to chart - tial to d

enqueue C in agenda essential to do
this efhiciently

T

1f chart contains a goal item, claim w € L(G)

Correctness of shift-reduce

e Why should we believe that the SR parser always
makes correct claims about the word problem?

e To convince ourselves, we need to prove:

» soundness: SR recognizer only claims w € L(G)
if this is true;

» completeness: it w € L(QG) is true, then SR recognizer claims
it 1s.

Soundness

e Show: If SR recognizer claims w € L(G), then it is true.

e Prove by induction over derivation length k that all
items that are being derived are true.

» k=0:Item is start item (e, w). This is trivially true.

» k> k+1: Any derivation of k+1 steps ends in a last step.

- Shift: (e, w) >* (s,aw’) > (sa, w).
By induction hypothesis, (s, a w’) is true, i.e. saw =* w.
Thus, (s a, w’) is obviously true as well.

- Reduce: (¢, w) >* (ss, W) > (s A, w).
By induction hypothesis, (s s, w’) is true, i.e. s s W =* w.

Thus we have s A W = ss w =*w,ie. (s A, W) is true.

Completeness

o Show: If w € L(G), then SR recognizer claims it is true.

e Prove by induction over length of CFG derivation that
if A =*w;... wk, then (g, wi ... wk) s?{* (A, g).

4

4

lengt!

h = 1: one shift + one reduce does it

lengt!

nk>k+1: A= BC=2%wi... wi.1 Wj ... Wk
N— e N— —
B C

Then by induction hypothesis, can derive
(& Wi ... wi) >* (B, wj ... wi) > (BC,) > (A, ¢)
SR SR R

Conclusion

o Context-free grammars: most popular grammar
formalism in NLP.

e Parsing algorithms.

» today, shift-reduce
» next time, CKY

e Outlook:

» combine CFG parsing with statistics

» more expressive grammar formalisms

