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Sentences have structure

Record it conveniently in phrase structure tree.
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Ambiguity

Special challenge: sentences can have many possible structures.
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shot an elepLant in my py]amas I  shot an  elephant in my pyjamas

This sentence is example of attachment ambiguity.



Grammars

A grammar is a finite device for describing large
(possibly infinite) set of strings.

» strings = NL expressions of various types

» grammar captures linguistic knowledge about
syntactic structure

There are many different grammar formalisms
that are being used in NLP.

In this course we focus on context-free grammars.



Context-free grammars

o Context-free grammar (cfg) G is 4-tuple (N, T,S,P):

» N and T are disjoint finite sets of symbols:
T = terminal symbols; N = nonterminal symbols.

» S e N is the start symbol.

» P is a finite set of production rules of the form A > w,
where A is nonterminal and w is a string from (N u T)*.

e Why “context-free”?

» Left-hand side of production is a single nonterminal A.
» Rule can't look at context in which A appears.

» Context-sensitive grammars can do that.



Example

T = {John, ate, sandwich, a}
N ={S, NP, VB, V, N, Det}; start symbol: S

Production rules:
S>NP VP
NP > Det N
VP > V NP

V > ate
NP - John

Det > a
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Some important concepts

o One-step derivation relation =
wiAw,=wiww;y it A>wisinP

(w1, w2, w are strings from (N u T)*)

e Derivation relation =~ is reflexive, transitive closure:

w = wyhif w = w; = ... = w;, (for somen > 0)

e Language L(G) ={we T*|S =* w}



Derivations and parse trees

Parse tree provides readable, high-level view of derivation.

derivation parse tree
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Big languages

Number of parse trees can grow exponentially in string length.
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Recognition and parsing

Let G be a cfg and w be a string.

Word problem: is w € L(G)?

» Algorithms that solve it are called recognizers.

Parsing problem: enumerate all parse trees of w.

» Algorithms that solve it are called parsers.

Every parser also solves the word problem.



Parsing algorithms

e How can we solve the word and parsing problem so
systematically that we can implement it?

e One simple approach: shift-reduce algorithm
(here: only for the word problem).

e Next time: Analyze efliciency of SR and replace it
with faster algorithm: CKY.



Shift-Reduce Parsing

T = {John, ate, sandwich, a}
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Shift-Reduce Parsing

Read input string step by step. In each step, we have

» the remaining input words we have not shifted yet

» a stack of terminal and nonterminal symbols

In each step, apply a rule:
» Shift: moves the next input word to the top of the stack

» Reduce: applies a production rule to replace top of stack
with the nonterminal on the left-hand side

Sentence is in language of cfg iff we can read the
whole string and stack contains only start symbol.



Shift-Reduce Parsing

Shift rule:
(s,a-w)>(s-a, w)

Reduce rule:
(sw,w)=>(s*A,w)if A>w inP

Start: (¢, w)

Apply rules nondeterministically:
Claim w € L(G) if there exists some sequence of steps
that derive (S, €) from (&, w).



Nondeterminism

Claim that string is in language of cfg iff (S, €)
can be derived by any sequence of shift and reduce
steps.

This is very important because there are many
stack-string pairs where multiple rules can be applied:

» shift-reduce conflict

» reduce-reduce conflict

In practice, we need to try all sequences out.

» Compilers for programming languages avoid this by careful
language design: no ambiguity in grammar.



Parsing Schemata ﬁ
o

e A
S%lieber

e Parsing algorithm derives claims about the string.
Record such claims in parse items.

o At each step, apply a parsing rule to infer new parse
items from earlier ones.

o If there is a way to derive a goal item from the start
item(s) for a given input string, then claim that this
string is in the language.



Schema for shift-reduce

[tems are of the form (s,w’) where w’ is a suffix of
the input string w, and s is the stack.

» Claim of this item: Underlying cfg allows the derivation
SW =*w

Start item: (&, w); goal item: (S, €)

Parsing rules:

(s,a - w) (s-ssw) A->sinP
(shift) (reduce)
(s-a,w) (s - A, W)




Implementing schemas

e Can generally implement parser for given schema in
the following way:

» maintain an agenda: queue of items that we have discovered,
but not yet attempted to combine with other items

» maintain a chart of all seen items for the sentence

|
initialize chart and agenda with all start items rules Ofparsingj
e

schema used her
B

while agenda not empty:
1tem = dequeue(agenda)
for each combination c of item with other item in the chart:
1f ¢ not in chart:
add ¢ to chart
enqueue C 1nh agenda

1f chart contains a goal item, claim w € L(G)
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Correctness of shift-reduce

e Why should we believe that the SR parser always
makes correct claims about the word problem?

e To convince ourselves, we need to prove:

» soundness: SR recognizer only claims w € L(G)
if this is true;

» completeness: it w € L(QG) is true, then SR recognizer claims
it 1s.



Soundness

e Show: If SR recognizer claims w € L(G), then it is true.

e Prove by induction over derivation length k that all
items that are being derived are true.

» k=0:Item is start item (e, w). This is trivially true.

» k> k+1: Any derivation of k+1 steps ends in a last step.

- Shift: (e, w) >* (s,aw’) > (sa, w).
By induction hypothesis, (s, a w’) is true, i.e. saw =* w.
Thus, (s a, w’) is obviously true as well.

- Reduce: (¢, w) >* (ss, W) > (s A, w).
By induction hypothesis, (s s, w’) is true, i.e. s s W =* w.

Thus we have s A W = ss w =*w,ie. (s A, W) is true.



Completeness

o Show: If w € L(G), then SR recognizer claims it is true.

e Prove by induction over length of CFG derivation that
if A =*w;... wk, then (g, wi ... wk) s?{* (A, g).

4

4

lengt!

h = 1: one shift + one reduce does it

lengt!

nk>k+1: A= BC=2%wi... wi.1 Wj ... Wk
N— e N— —
B C

Then by induction hypothesis, can derive
(& Wi ... wi) >* (B, wj ... wi) > (BC, ) > (A, ¢)
SR SR R



Conclusion

o Context-free grammars: most popular grammar
formalism in NLP.

e Parsing algorithms.

» today, shift-reduce
» next time, CKY

e Outlook:

» combine CFG parsing with statistics

» more expressive grammar formalisms



