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Sentences have structure
Record it conveniently in phrase structure tree.
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Ambiguity
Special challenge: sentences can have many possible structures.
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Grammars

• A grammar is a finite device for describing large 
(possibly infinite) set of strings. 
‣ strings = NL expressions of various types 

‣ grammar captures linguistic knowledge about  
syntactic structure 

• There are many different grammar formalisms 
that are being used in NLP. 

• In this course we focus on context-free grammars.



Context-free grammars

• Context-free grammar (cfg) G is 4-tuple (N,T,S,P): 
‣ N and T are disjoint finite sets of symbols: 

T = terminal symbols; N = nonterminal symbols. 

‣ S ∈ N is the start symbol. 

‣ P is a finite set of production rules of the form A → w,  
where A is nonterminal and w is a string from (N ∪ T)*. 

• Why “context-free”? 
‣ Left-hand side of production is a single nonterminal A. 

‣ Rule can’t look at context in which A appears. 

‣ Context-sensitive grammars can do that.



Example
T = {John, ate, sandwich, a} 
N = {S, NP, VP, V, N, Det}; start symbol: S 

Production rules: 
S → NP  VP 
NP → Det N 
VP → V NP

V → ate 
NP → John

Det → a 
N → sandwich
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Some important concepts

• One-step derivation relation ⇒: 
w1 A w2 ⇒ w1 w w2  iff  A → w is in P 
(w1, w2, w are strings from (N ∪ T)*) 

• Derivation relation ⇒* is reflexive, transitive closure:  
w ⇒* wn if w ⇒ w1 ⇒ ... ⇒ wn (for some n ≥ 0) 

• Language L(G) = {w ∈ T* | S ⇒* w}



Derivations and parse trees
Parse tree provides readable, high-level view of derivation.
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Big languages
Number of parse trees can grow exponentially in string length.
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Recognition and parsing

• Let G be a cfg and w be a string. 

• Word problem: is w ∈ L(G)? 
‣ Algorithms that solve it are called recognizers. 

• Parsing problem: enumerate all parse trees of w. 
‣ Algorithms that solve it are called parsers. 

• Every parser also solves the word problem.



Parsing algorithms

• How can we solve the word and parsing problem so 
systematically that we can implement it? 

• One simple approach: shift-reduce algorithm  
(here: only for the word problem). 

• Next time: Analyze efficiency of SR and replace it 
with faster algorithm: CKY.



Shift-Reduce Parsing
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Shift-Reduce Parsing

• Read input string step by step. In each step, we have 
‣ the remaining input words we have not shifted yet 

‣ a stack of terminal and nonterminal symbols 

• In each step, apply a rule: 
‣ Shift: moves the next input word to the top of the stack 

‣ Reduce: applies a production rule to replace top of stack 
with the nonterminal on the left-hand side 

• Sentence is in language of cfg iff we can read the 
whole string and stack contains only start symbol.



Shift-Reduce Parsing

• Shift rule: 
(s, a⋅w) → (s⋅a, w) 

• Reduce rule: 
(s⋅w’, w) → (s⋅A, w) if A → w’ in P 

• Start: (ε, w) 

• Apply rules nondeterministically: 
Claim w ∈ L(G) if there exists some sequence of steps 
that derive (S, ε) from (ε, w).



Nondeterminism

• Claim that string is in language of cfg iff (S, ε) 
can be derived by any sequence of shift and reduce 
steps. 

• This is very important because there are many  
stack-string pairs where multiple rules can be applied: 
‣ shift-reduce conflict 

‣ reduce-reduce conflict 

• In practice, we need to try all sequences out. 
‣ Compilers for programming languages avoid this by careful 

language design: no ambiguity in grammar.



Parsing Schemata

• Parsing algorithm derives claims about the string.  
Record such claims in parse items. 

• At each step, apply a parsing rule to infer new parse 
items from earlier ones. 

• If there is a way to derive a goal item from the start 
item(s) for a given input string, then claim that this 
string is in the language.

Shieber



Schema for shift-reduce

• Items are of the form (s,w’) where w’ is a suffix of 
the input string w, and s is the stack. 
‣ Claim of this item: Underlying cfg allows the derivation 

s w’ ⇒* w 

• Start item: (ε, w); goal item: (S, ε) 

• Parsing rules:
(s, a ⋅ w’)

(s ⋅ a, w’)
(shift)

(s ⋅ s’, w’)    A → s’ in P

(s ⋅ A, w’)
(reduce)



Implementing schemas

• Can generally implement parser for given schema in 
the following way: 
‣ maintain an agenda: queue of items that we have discovered, 

but not yet attempted to combine with other items 

‣ maintain a chart of all seen items for the sentence

rules of parsing  
schema used here

initialize chart and agenda with all start items

while agenda not empty:
  item = dequeue(agenda)
  for each combination c of item with other item in the chart:
    if c not in chart:
      add c to chart
      enqueue c in agenda

if chart contains a goal item, claim w ∈ L(G)



Implementing schemas

• Can generally implement parser for given schema in 
the following way: 
‣ maintain an agenda: queue of items that we have discovered, 

but not yet attempted to combine with other items 

‣ maintain a chart of all seen items for the sentence

rules of parsing  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initialize chart and agenda with all start items
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  for each combination c of item with other item in the chart:
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essential to do  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Correctness of shift-reduce

• Why should we believe that the SR parser always 
makes correct claims about the word problem? 

• To convince ourselves, we need to prove: 
‣ soundness: SR recognizer only claims w ∈ L(G) 

if this is true; 

‣ completeness: if w ∈ L(G) is true, then SR recognizer claims 
it is.



Soundness

• Show: If SR recognizer claims w ∈ L(G), then it is true. 

• Prove by induction over derivation length k that all 
items that are being derived are true. 
‣ k = 0: Item is start item (ε, w). This is trivially true. 

‣ k → k+1: Any derivation of k+1 steps ends in a last step. 
- Shift: (ε, w) →* (s, a w’) → (s a, w’). 

By induction hypothesis, (s, a w’) is true, i.e. s a w’ ⇒* w. 
Thus, (s a, w’) is obviously true as well. 

- Reduce: (ε, w) →* (s s’, w’) → (s A, w’). 
By induction hypothesis, (s s’, w’) is true, i.e. s s’ w’ ⇒* w. 
Thus we have s A w’ ⇒ s s’ w’ ⇒* w, i.e. (s A, w’) is true.



Completeness

• Show: If w ∈ L(G), then SR recognizer claims it is true. 

• Prove by induction over length of CFG derivation that 
if A ⇒* wi … wk, then (ε, wi … wk) →* (A, ε). 

‣ length = 1: one shift + one reduce does it 

‣ length k → k+1: A ⇒ B C ⇒* wi … wj-1 wj … wk 
 
 
Then by induction hypothesis, can derive 
(ε, wi … wk) →* (B, wj … wk) →* (BC, ε) → (A, ε)

SR

SR SR R

( (

B C



Conclusion

• Context-free grammars: most popular grammar 
formalism in NLP. 

• Parsing algorithms. 
‣ today, shift-reduce 

‣ next time, CKY 

• Outlook: 
‣ combine CFG parsing with statistics 

‣ more expressive grammar formalisms


