Computational Linguistics
Assignment 5 (2018-12-18)

Winter Semester 2018/19 — Prof. Dr. Alexander Koller

Word alignments

Aligning sentences and words are central tasks in statistical machine transla-
tion (SMT). In this assignment, you get to implement a word aligner. Given
pairs of aligned sentences in two languages, source and target, the goal is
to align source words to their target translations. The resulting alignments
might contain unaligned or multiply aligned words, i.e., the word alignments
are generally m:n, which makes the task challenging.

This assignment is almost identical to the first assignment of a well-known
online course on SMT, which is available here: http://mt-class.org/jhu/
hwil.html. Read this website, and note in particular the link to a tutorial
by Adam Lopez on how to implement IBM Model 1. The key points are as
follows:

1. Clone the repository from https://github.com/alopez/en600.468.
git, using Git. Observe that the repository contains some code and
a dataset of 100,000 English-French sentence pairs (hansards.e and
hansards.f) in the folder aligner. The first 37 sentence pairs are
manually aligned, and these manual alignments are encoded in file
hansards.a.

2. Get to know the code of the aligner (folder aligner). It provides a
very simple baseline system; test it through the provided command-
line interface. Submit the Alignment Error Rate (AER) of the baseline
system. Observe that it is terrible.

3. Your task is to improve over the baseline by implementing an aligner
based on IBM Model 1 (see The Challenge section of the JHU course
for a more detailed description). Your program should learn the para-
meters P(e|f) of Model 1 from the given data, and then use them to
compute optimal alignments. Submit the AER for your implementati-
on. Feel free to use NLTK if you find it helpful, but note that anything
in the nltk.align package is disallowed in this assignment.



4. In addition to what is required in the JHU assignment, experiment
also with an off-the-shelf aligner of your choice. GIZA++ used to be
the standard, but is now hard to compile. Depending on your prefe-
rence of programming language, you might try MGIZA, fast_align, or
the Berkeley aligner (see the website for links). Compare your IBM
Model 1 to the implementation of Model 1 in the off-the-shelf aligner
(if available) and another Model i > 1 of your choice.

Extra credit: Implement an aligner that improves over your implemen-
tation of IBM Model 1. Some ideas are suggested in the JHU homework
assignment.

Submissions: Submit your code and document all your evaluation results.
Submit at least one alignment visualization from your system in comparison
to the baseline system and the off-the-shelf aligner so we can discuss it in
class.

Turn in before class on 2019-01-15 on Piazza.



