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Computing with meanings
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e Ancient problem: inference.

» How can we tell whether a sentence follows from others?

» Can we compute this automatically?

All men are mortal.

Socrates is a man.

Therefore, Socrates is mortal.




Formal meaning representations

e Modern approach to natural-language inference:

» Compute meaning representation in some formal
language (e.g. predicate logic)

» so that it captures something relevant about the sentence’s
meaning (e.g. its truth conditions)

» and then use reasoning tools for the formal language
(e.g. a theorem prover for predicate logic)

All men are mortal. vx. man(x) > mortal(x)

Socrates is a man. man(s)

Therefore, Socrates is mortal. mortal(s)




Syntax-semantics interface

S> NP VP (§) =<NP)(KVP)) M(}))ﬁ'tague
VP >V NP (VP) = Ay (NP)KV)(y))
NP > Det N (NP) = (Det)(KN))
NP > John (NP) = AP P(j*)
V > eats (V) =eat
Det > a (Det) = APAQ3x P(x) A Q(x)
N > sandwich (N) =sw’
T \
when you apply this ... construct A-term for parent

syntax rule ... from A-terms for children like this



Example

(AP P(j*)) (Ay 3x sw’(x) Aeat’(y)(x))

> (Ay Ix sw’'(x) Aeat’(y)(x))(*)
>p Ix sw'(x) Aeat’ (j*)(x)

AP P(j*) Ay (AQ3x sw’'(x) A Q(x))(eat'(y))
k\ >g Ay 3x sw'(x) Aeat’(y)(x)
(APAQ3x P(x) A Q(x))(sw)
/\\\ 5 B AQ3Ix sw(x) A Q(x)
eat’ € m- -
\~x |
SW

APAQ3x P(x) A Q(x)



Semantic parsing

e Open issue in classical semantics construction:
Where do we get large grammar that supports it?

e Current trend in CL is semantic parsing:
learn mapping from sentence to formal meaning
representation using statistical methods.

e E.g. from Geoquery corpus (880 sentences):

What is the smallest state by area?

answer(xi1, smallest(xz, state(xi1), area(xi, x2)))




With synchronous grammars

e Use a synchronous grammar (= SFCG) to
simultaneously generate strings and A-expressions.

Q > what is the F
F > smallest F F
F > state

F > by area

Q
T T

what is the F

T

smallest F F

N

state by area

Q > answer(xy, F(x1))

F > Ax; smallest(xz, F(x1), F(x1, X2))
F > Ax; state(x:)

F > Ax1 Ax; area(Xx1, X2)

Q
B e

answer(x1, F (1))

] T

Az;.smallest(x2, F (x1), F

Azristate(zy) AxiAzroarea(ry, x2)



Wong & Mooney

what is the smallest state by area
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answer(x1, F )

7 T

smallest(zo, F F )

state(x1) area(xy,x2)

Assumptions:
- alignments between words and nodes
- unambiguous structure of meaning representation



Wong & Mooney

what is the smallest state by area

" “word” alignments;

answer(x1, F )
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state(xy) area(xy, 332)

Assumptions:
- alignments between words and nodes
- unambiguous structure of meaning representation



Wong & Mooney

what is the smallest state|by area

" “word” alignments;

Q

answer(z1, F )

smallest (s, F F )
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s
------

state(xy) | area(xy, x2)

Assumptions:
- alignments between words and nodes
- unambiguous structure of meaning representation



Wong & Mooney

what is the smallest|state|by area

" “word” alignments;

answer(z1, F )

smallest(zo, F F )

s
------

state(x1)|| area(xy, x2)

Assumptions:
- alignments between words and nodes
- unambiguous structure of meaning representation



Wong & Mooney

what is the [smallest|state|by area

" “word” alignments;

answer(z1, F )

smallest(xa, F F )

s
------

state(x1)|| area(xy, x2)

Assumptions:
- alignments between words and nodes
- unambiguous structure of meaning representation



Wong & Mooney

what is the [smallest|state|by area

" “word” alignments;

answer(z1, F )

smallest(xa, F F )

s
------

state(x1)|| area(xy, x2)

Assumptions:
- alignments between words and nodes
- unambiguous structure of meaning representation



Wong & Mooney

what is the [smallest|state|by area

Where do unaligned words belong?

" “word” alignments:
Q > whatisthe F | F - smallestF '=
Q> whatF | F- isthe smallest F

answer(z1, F )

smallest(x2, F F )

s
------

state(x1)|| area(xy, x2)

Assumptions:
- alignments between words and nodes
- unambiguous structure of meaning representation



Log-linear probability models

e Define probability of parse tree in terms of features:

P(|0) = 5 g7

where 0 - f(t,w) = 01 - fi(t,w) + ... + 0, - fu(t,w)

e Features f(t,w) can capture arbitrary properties of
t and w.

» Here: Each feature counts uses of one grammar rule.

e Train weight vector 6 from data.



Combinatory categorial grammar

John eats a big sandwich
NP  (S\NP)/NP NP/N  N/N N
>
N
>
NP
>
S\NP
<




Semantics in CCG

X:a X/Y: f Y/Z: g X/IY:f  Y\Z:g
>T >B >Bx
Y/(Y\X): APP(a) X/Z: Ax.f(g(x)) X\Z: Ax.f(g(x))
X:a Y\Z: ¢ X\Y: f Y/Z:g  X\Y:f
N/X) APP@) Xz g XIZ @) o

John
NP: h* eats
>T :
S/(S\NP): APP(h*) (S\NP)/NP: eat’ a sandwich
>B
S/INP: Ax.(APP(h*))(eat’(x)) =p Ax.eat (x)(h*) NP: sw’

S: (Ax.eat’(x)(h*))(sw’) = eat’(sw’)(h*)



Zettlemoyer & Collins

GENLEX: build candidates for lexicon entries

Rules Categories produced from logical form
Input Trigger Output Category arg max(Ax.state(x) A borders(x,texas), Ax.size(x))
constant ¢ NP :c NP :texas
arity one predicate p N : Ax.p1(x) N : Ax.state(x)
arity one predicate p S\NP : \x.p1(x) S\NP : \x.state(x)
arity two predicate po (S\NP)/NP : \x.\y.p2(y, ©) (S\NP)/NP : \x.\y.borders(y, x)
arity two predicate po (S\NP)/NP : \x.\y.p2(z,y) (S\NP)/NP : \x.\y.borders(x,y)
arity one predicate p N/N : Ag.Ax.p1(x) A g(x) N/N : Ag.Ax.state(x) N g(x)
literal with arity two predicate po _ .
and constant second argument c N/N : Ag.Ax.p2(x,c) A\ g(x) N/N : Ag.Ax.borders(z,texas) N\ g(x)
arity two predicate po (N\N)/NP : Ax.\g. y.p2(x,y) A\ g(x) (N\N)/NP : Ag.\x.\y.borders(z,y) A g(x)
an arg max / min with second . : ‘ :
argument arity one function f NP/N : Ag.arg max / min(g, Az.f(x)) NP/N : Ag.arg max(g, Ax.size(x))
an arity one . . .
numeric-ranged function f S/NP: Az f() S/NP : Av.size()




Zettlemoyer & Collins

overall learning algorithm

Algorithm:
eFort=1...7T

Step 1: (Lexical generation)
e Fort=1...n:
— Set A\ = Ag U GENLEX(Sq;, LZ)
— Calculate m = PARSE(S;, L;, X, 0" 1).
— Define \; to be the set of lexical entries in 7.
o Set Ay = A U U?:l N\
Step 2: (Parameter Estimation)
o Set §* = ESTIMATE(A;, E£,61)




Evaluation results

System Variable Free Lambda Calculus
Rec. Pre. F1 | Rec. Pre. F1
Cross Validation Results
KRISP | 71.7 93.3 81.1 — — —
WASP 74.8 87.2 80.5 — — —
Lu08 81.5 89.3 85.2 — — —
A-WASP — — — | 86.6 92.0 &9.2 |
Independent Tegt Set
ZC05 — — — [179.3 96.3 87.0]
ZC0O7 — — — 86.1 91.6 &8.8
UBL 814 894 85.2| 85.0 94.1 89.3
UBL-s 84.3 852 84.7| 879 885 88.2

(on Geoquery 880 corpus)



Abstract Meaning Representations

e Pros and cons of Geoquery:

» semantic representations are trees — (too) easy

» very small

e Since 2014, much larger corpora available:
~40k AMRs, graphs as semantic representations.

“I don’t want anyone to read my book carelessly.”




Dependency-style AMR parsing

“The boy wants to visit New York City””

JAMR; Flanigan et al. 2014



Dependency-style AMR parsing

“The boy wants to visit New York City””

Concept Identification: determine atomic graph for each word.

JAMR; Flanigan et al. 2014
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Dependency-style AMR parsing

“The boy wants to visit New York City””
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Concept Identification: determine atomic graph for each word.

JAMR; Flanigan et al. 2014



Dependency-style AMR parsing

“The boy wants to visit New York City.”

Concept Identification: determine atomic graph for each word.

Relation Identification: add all edges with positive weight; then repeatedly
add least negative edge that connects subgraphs.

JAMR; Flanigan et al. 2014
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CCG-based AMR parsing

Select lexical entries
from max scoring
correct derivation

Generated

Entries

Bottom-up Pass

~ Underspecified
=~ logical form

Pyongyang officials denied their involvement

(slide by Yoav Artzi)



CCG-based AMR parsing

Common Failure

* High syntactic variation

* Missing templates

 No complete correct
derivation created

Need to learn
new templates

Generated
Entries

Pyongyang officials denied their involvement

(this happens in 40% of training data)

(slide by Yoav Artzi)



CCG-based AMR parsing

Splitting CCG Categories

Given a CCG category C' : h:
1. Split logical form hto fand ¢ s.t.:

flg)="h or Az.f(g(z)) =h
2. Infer syntax from logical form type

NP /Ny - Af.)i.f(i) A ARG1(i, R(ID))

N P[nb] : Mi.involve-01(7)A Ninp) + Ad.involve-01()

ARGI1(¢, R(ID)) NP,y : R(ID)
NPy \N P : \z.\i.involve-01(i) A ARG1(i, x)

(slide by Yoav Artzi)



CCG-based AMR parsing

Top-down Pass

Underspecified
~ logical form

 Each split combines a
new category with an
existing partial

derivation
Generated E
* ®

Pyongyang officials denied their involvement

(slide by Yoav Artzi)



Results

P R F1
JAMR (fixed) 67.8 | 59.2 | 63.2
Our approach 66.8 | 65.7 | 66.3
Pre-release corpus results
JAMR (Flanigan et al., 2014) | 52.0 | 66.0 | 58.0
JAMR (fixed) 66.8 | 58.3 | 62.3
Wang et al. (2015) 64.0 | 62.0 | 63.0

Table 1: Test SMATCH results.

(Artzi et al. 2015)



Conclusion

Challenge in compositional semantic construction:
Where do we get large-scale grammars?

Semantic parsing: Learn such grammars from
corpora with semantic annotations.

» GeoQuery: small corpus of trees

» AMRBank: new hotness

Very active research topic right now.



