Semantic parsing

Computational Linguistics

Alexander Koller

26 January 2018

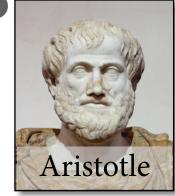
Computing with meanings

- Ancient problem: *inference*.
 - How can we tell whether a sentence follows from others?
 - Can we compute this automatically?

All men are mortal.

Socrates is a man.

Therefore, Socrates is mortal.



Formal meaning representations

- Modern approach to natural-language inference:
 - Compute *meaning representation* in some formal language (e.g. predicate logic)
 - so that it captures something relevant about the sentence's meaning (e.g. its *truth conditions*)
 - and then use reasoning tools for the formal language (e.g. a *theorem prover* for predicate logic)

All men are mortal.

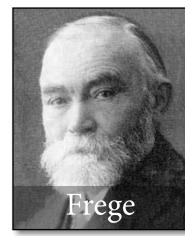
Socrates is a man.

Therefore, Socrates is mortal.

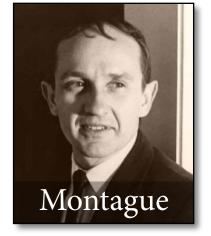
 $\forall x. man(x) \rightarrow mortal(x)$

man(s)

mortal(s)



Syntax-semantics interface

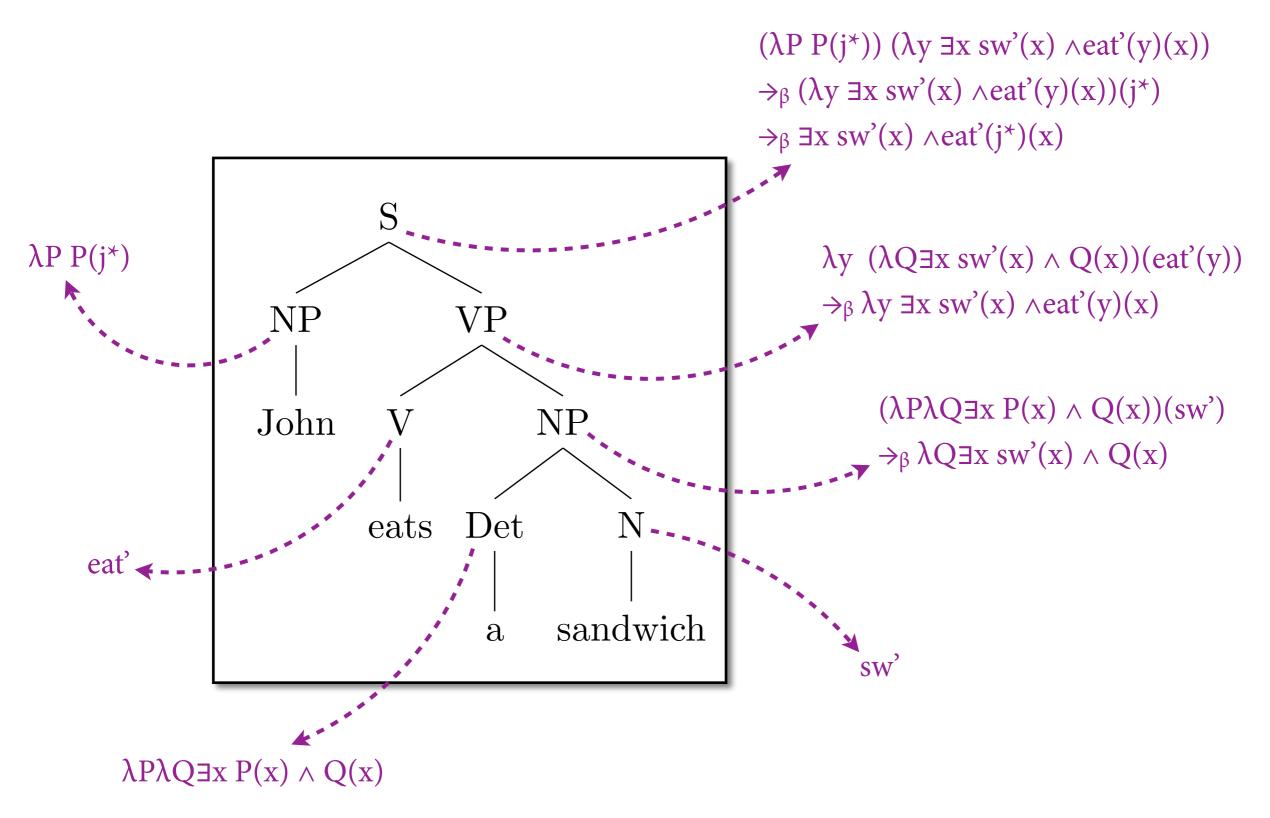


$S \rightarrow NP VP$	$\langle S \rangle = \langle NP \rangle (\langle VP \rangle)$
$VP \rightarrow V NP$	$\langle VP \rangle = \lambda y \langle NP \rangle (\langle V \rangle (y))$
$NP \rightarrow Det N$	$\langle NP \rangle = \langle Det \rangle (\langle N \rangle)$
$NP \rightarrow John$	$\langle NP \rangle = \lambda P P(j^*)$
$V \rightarrow eats$	$\langle V \rangle = eat'$
$Det \rightarrow a$	$\langle \text{Det} \rangle = \lambda P \lambda Q \exists x P(x) \land Q(x)$
$N \rightarrow sandwich$	$\langle N \rangle = sw'$

when you apply this syntax rule ...

... construct λ -term for parent from λ -terms for children like this

Example



Semantic parsing

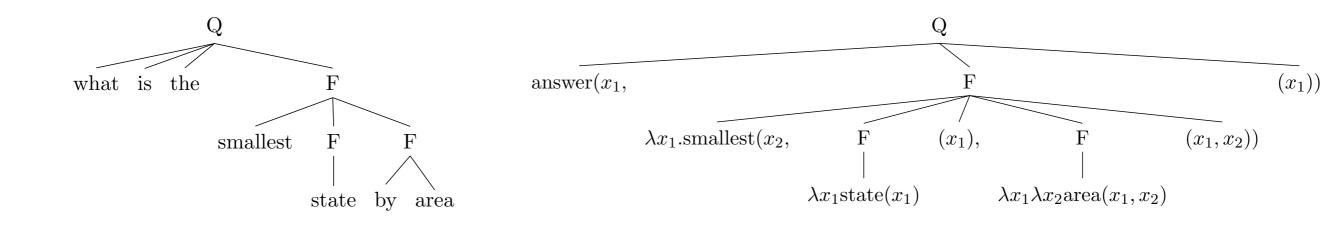
- Open issue in classical semantics construction: Where do we get large grammar that supports it?
- Current trend in CL is *semantic parsing*: learn mapping from sentence to formal meaning representation using statistical methods.
- E.g. from Geoquery corpus (880 sentences):

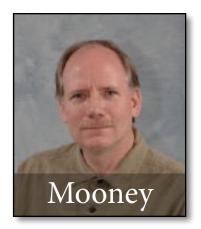
What is the smallest state by area? answer(x₁, smallest(x₂, state(x₁), area(x₁, x₂)))

With synchronous grammars

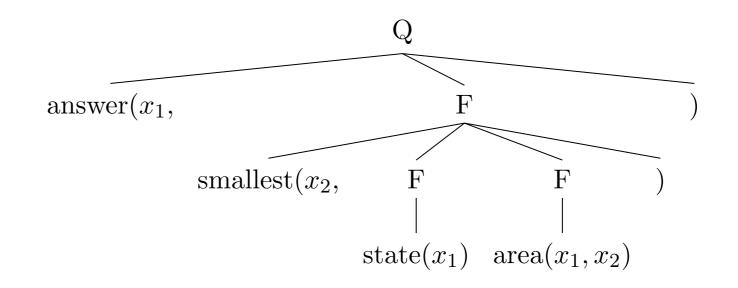
 Use a synchronous grammar (≈ SFCG) to simultaneously generate strings and λ-expressions.

$F \rightarrow smallest F F$ $F \rightarrow 7$ $F \rightarrow state$ $F \rightarrow 7$	answer(x_1 , F(x_1)) A x_1 smallest(x_2 , F(x_1), F(x_1 , x_2)) A x_1 state(x_1) A x_1 λx_2 area(x_1 , x_2)
--	---

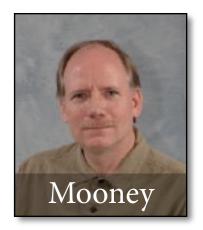


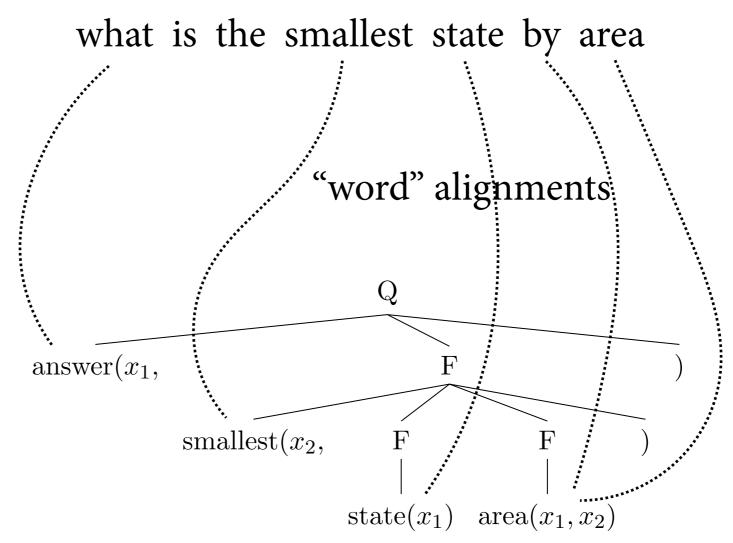


what is the smallest state by area

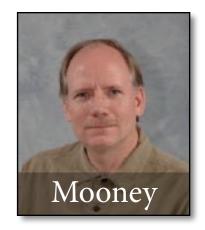


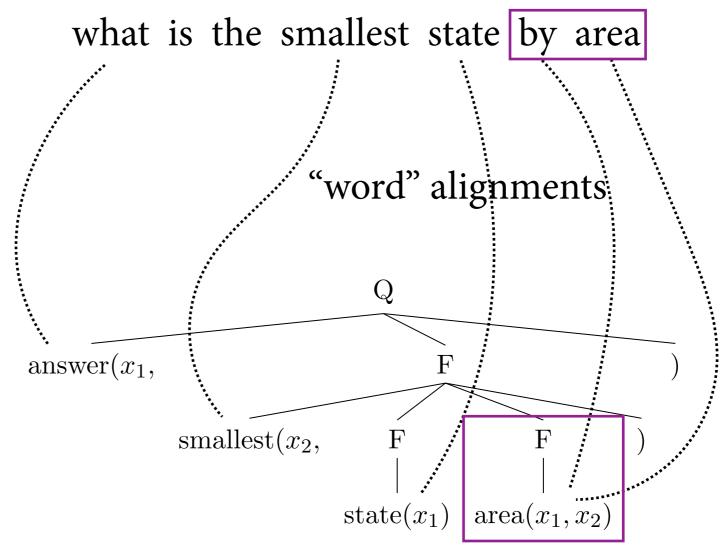
- alignments between words and nodes
- unambiguous structure of meaning representation



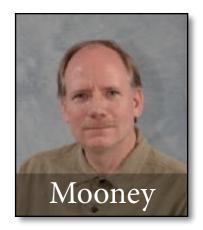


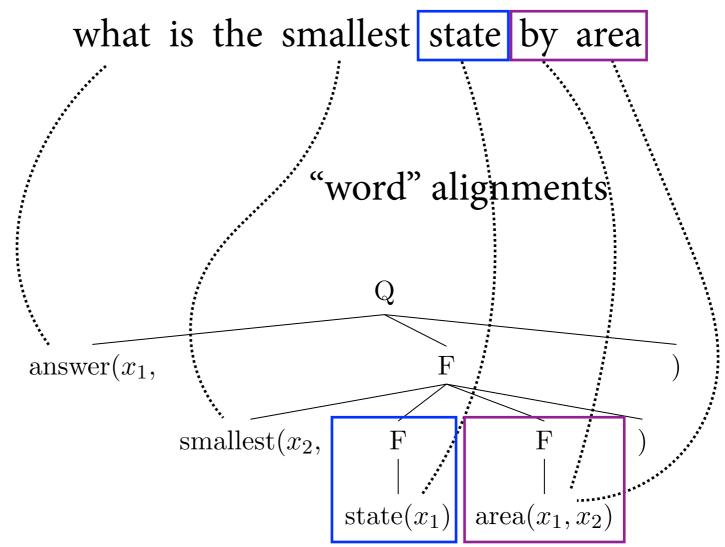
- alignments between words and nodes
- unambiguous structure of meaning representation



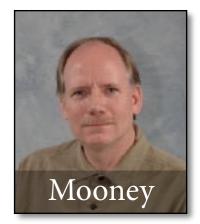


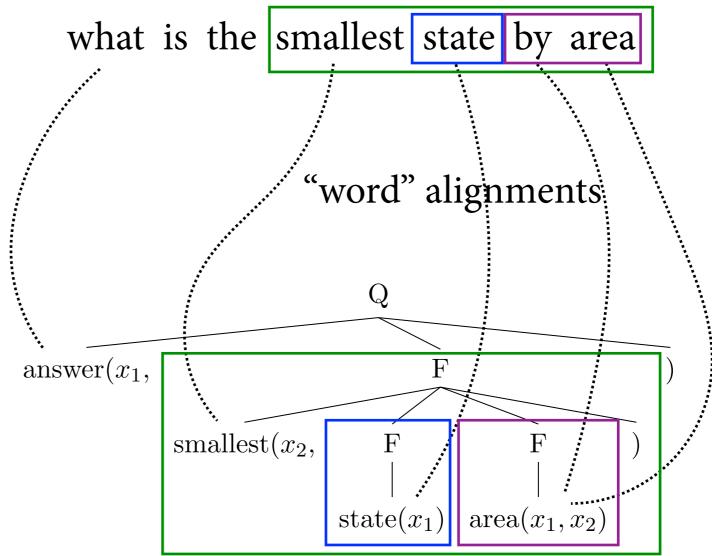
- alignments between words and nodes
- unambiguous structure of meaning representation



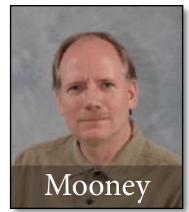


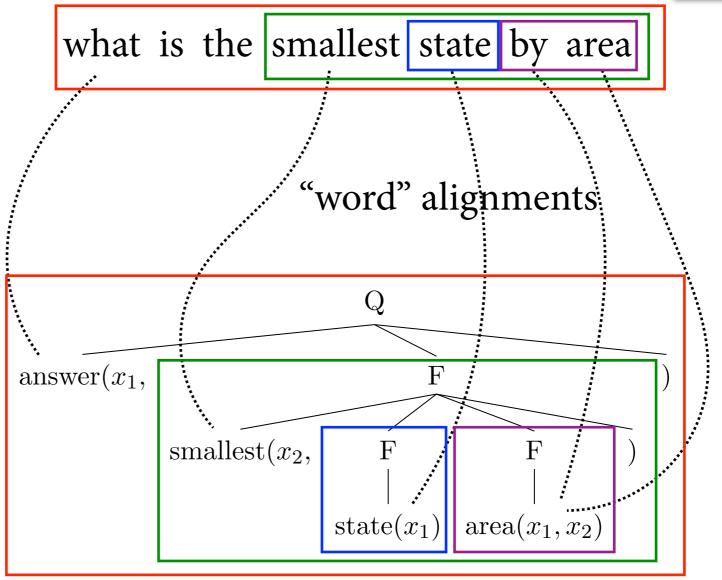
- alignments between words and nodes
- unambiguous structure of meaning representation



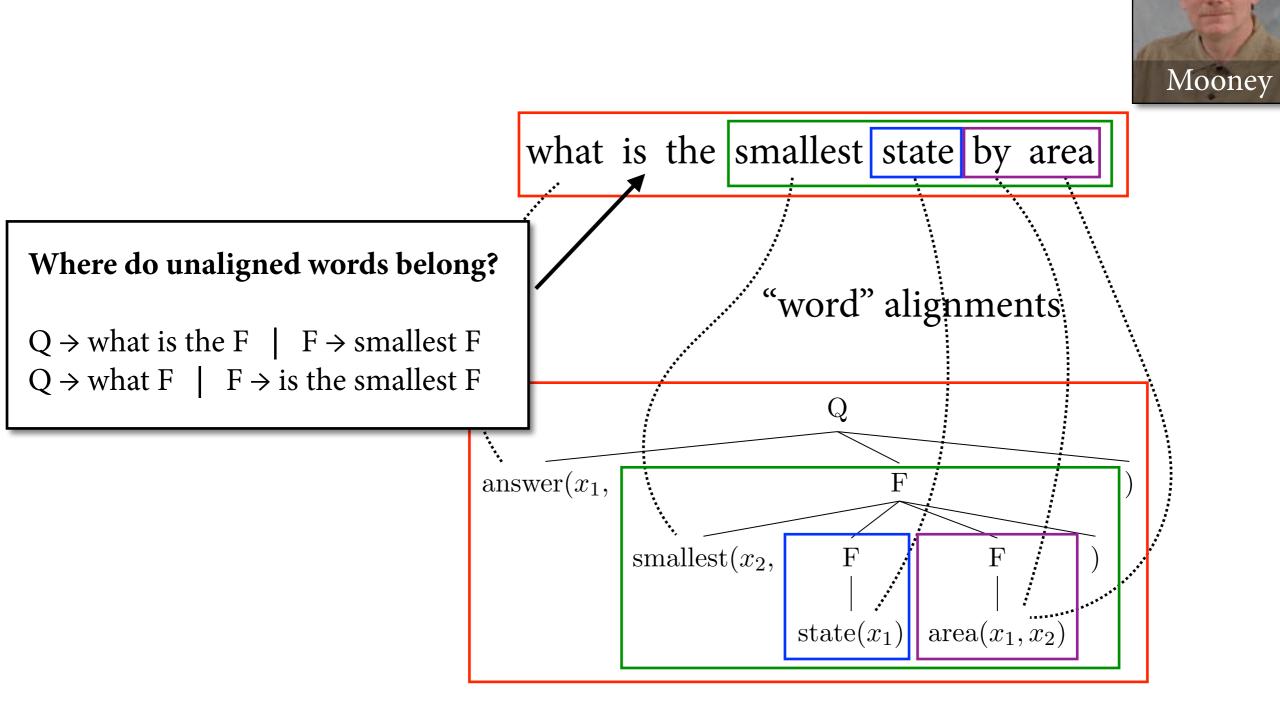


- alignments between words and nodes
- unambiguous structure of meaning representation





- alignments between words and nodes
- unambiguous structure of meaning representation



- alignments between words and nodes
- unambiguous structure of meaning representation

Log-linear probability models

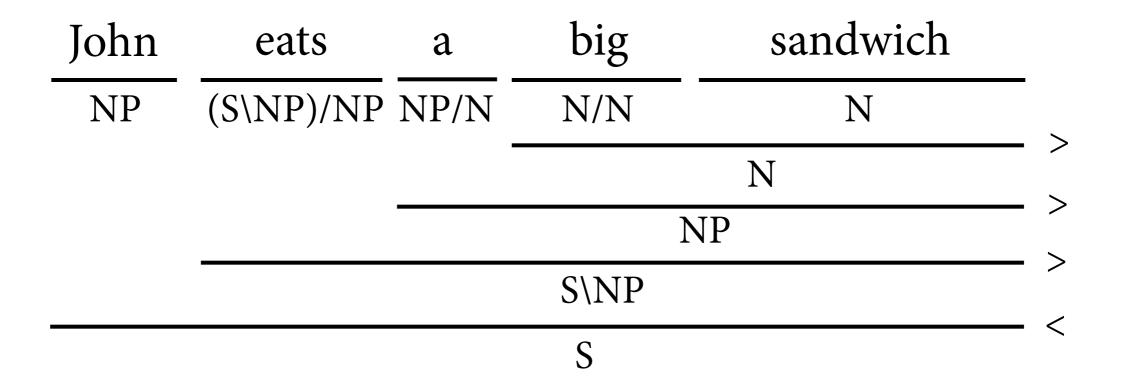
• Define probability of parse tree in terms of *features*:

$$P(t \mid w) = \frac{e^{\theta \cdot f(t,w)}}{\sum_{t'} e^{\theta \cdot f(t',w)}}$$

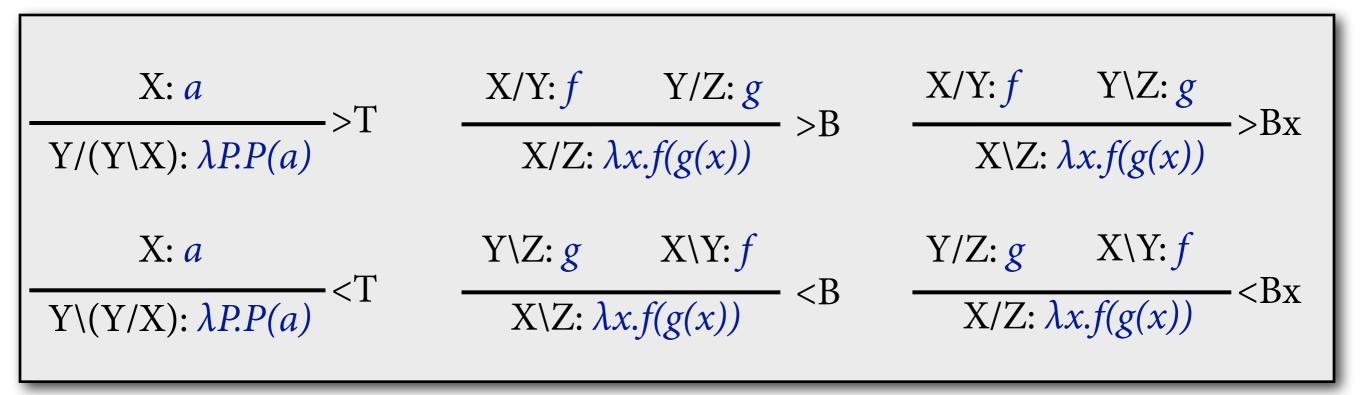
where $\theta \cdot f(t,w) = \theta_1 \cdot f_1(t,w) + \ldots + \theta_n \cdot f_n(t,w)$

- Features f(t,w) can capture arbitrary properties of t and w.
 - Here: Each feature counts uses of one grammar rule.
- Train weight vector θ from data.

Combinatory categorial grammar



Semantics in CCG



 $\frac{John}{NP: h^{*}} > T \qquad eats \\ \frac{S/(S \setminus NP): \lambda P.P(h^{*})}{S/(NP): \lambda x.(\lambda P.P(h^{*}))(eat'(x)) \Rightarrow_{\beta} \lambda x.eat'(x)(h^{*})} > B \qquad a \text{ sandwich} \\ \frac{S/NP: \lambda x.(\lambda P.P(h^{*}))(eat'(x)) \Rightarrow_{\beta} \lambda x.eat'(x)(h^{*})}{S: (\lambda x.eat'(x)(h^{*}))(sw') \Rightarrow_{\beta} eat'(sw')(h^{*})} > S$

Zettlemoyer & Collins

GENLEX: build candidates for lexicon entries

Rules		Categories produced from logical form		
Input Trigger	Output Category	$] \ \arg \max(\lambda x.state(x) \land borders(x, texas), \lambda x.size(x)) \\$		
constant c	NP:c	NP: texas		
arity one predicate p_1	$N:\lambda x.p_1(x)$	$N:\lambda x.state(x)$		
arity one predicate p_1	$S \setminus NP : \lambda x.p_1(x)$	$S \setminus NP : \lambda x.state(x)$		
arity two predicate p_2	$(S \setminus NP)/NP : \lambda x . \lambda y . p_2(y, x)$	$(S \setminus NP)/NP : \lambda x. \lambda y. borders(y, x)$		
arity two predicate p_2	$(S \setminus NP)/NP : \lambda x . \lambda y . p_2(x, y)$	$(S \setminus NP)/NP : \lambda x. \lambda y. borders(x, y)$		
arity one predicate p_1	$N/N: \lambda g.\lambda x.p_1(x) \wedge g(x)$	$N/N: \lambda g. \lambda x. state(x) \land g(x)$		
literal with arity two predicate p_2 and constant second argument c	$N/N: \lambda g.\lambda x.p_2(x,c) \wedge g(x)$	$N/N: \lambda g.\lambda x.borders(x,texas) \wedge g(x)$		
arity two predicate p_2	$(N \setminus N)/NP : \lambda x.\lambda g.\lambda y.p_2(x,y) \land g(x)$	$(N \setminus N)/NP : \lambda g. \lambda x. \lambda y. borders(x, y) \land g(x)$		
an arg max / min with second argument arity one function f	$NP/N: \lambda g. \arg \max / \min(g, \lambda x. f(x))$	$NP/N: \lambda g. \arg \max(g, \lambda x. size(x))$		
an arity one numeric-ranged function f	$S/NP:\lambda x.f(x)$	$S/NP:\lambda x.size(x)$		

Zettlemoyer & Collins

overall learning algorithm

Algorithm:

• For $t = 1 \dots T$

Step 1: (Lexical generation)

- For i = 1 ... n:
 - Set $\lambda = \Lambda_0 \cup \text{GENLEX}(S_i, L_i)$.
 - Calculate $\pi = \text{PARSE}(S_i, L_i, \lambda, \overline{\theta}^{t-1}).$
 - Define λ_i to be the set of lexical entries in π .

• Set
$$\Lambda_t = \Lambda_0 \cup \bigcup_{i=1}^n \lambda_i$$

Step 2: (Parameter Estimation)

• Set
$$\bar{\theta}^t = \text{ESTIMATE}(\Lambda_t, E, \bar{\theta}^{t-1})$$

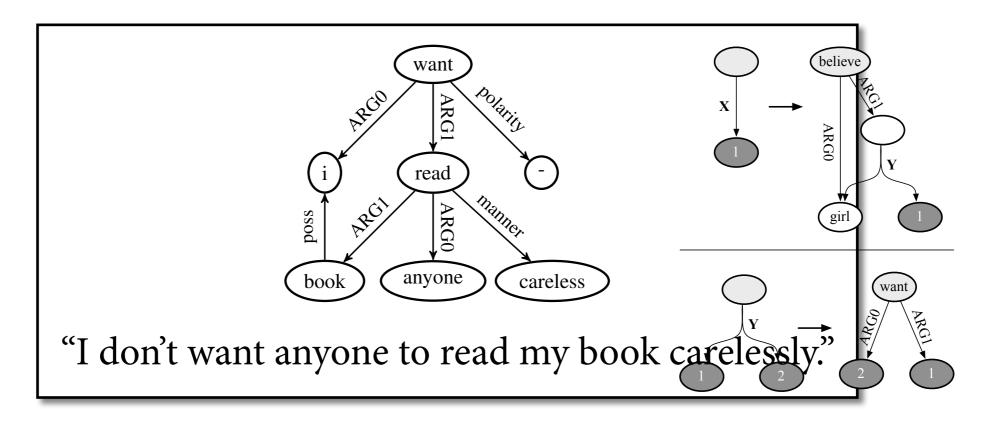
Evaluation results

System Variable Free		Lambda Calculus				
System	Rec.	Pre.	F1	Rec.	Pre.	F1
Cross Validation Results						
KRISP	71.7	93.3	81.1	—	—	_
WASP	74.8	87.2	80.5	_	—	_
Lu08	81.5	89.3	85.2		_	_
λ -WASP	_	_	—	86.6	92.0	89.2
Independent Test Set						
ZC05	—	—	—	79.3	96.3	87.0
ZC07	_	—	—	86.1	91.6	88.8
UBL	81.4	89.4	85.2	85.0	94.1	89.3
UBL-s	84.3	85.2	84.7	87.9	88.5	88.2

(on Geoquery 880 corpus)

Abstract Meaning Representations

- Pros and cons of Geoquery:
 - ▶ semantic representations are trees (too) easy
 - very small
- Since 2014, much larger corpora available:
 ~40k AMRs, graphs as semantic representations.



"The boy wants to visit New York City."

"The boy wants to visit New York City."

Concept Identification: determine atomic graph for each word.

"The boy wants to visit New York City."

boy

Concept Identification: determine atomic graph for each word.

"The boy wants to visit New York City."

boy

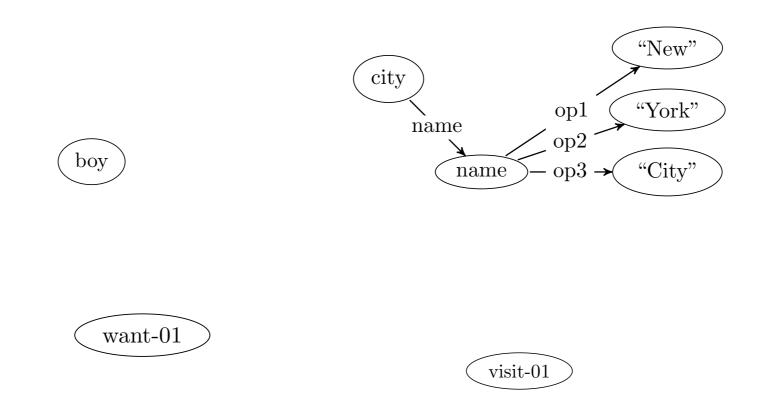
Concept Identification: determine atomic graph for each word.

"The boy wants to visit New York City."

want-01 visit-01

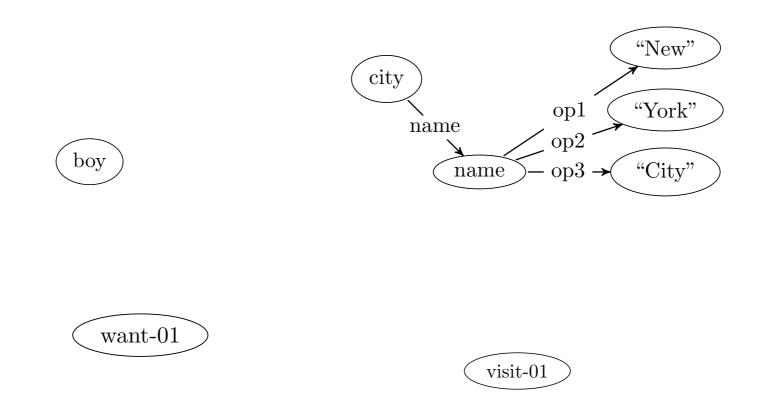
Concept Identification: determine atomic graph for each word.

"The boy wants to visit New York City."



Concept Identification: determine atomic graph for each word.

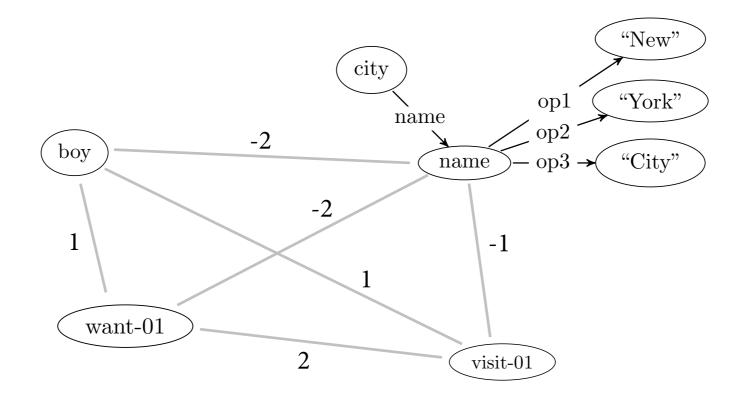
"The boy wants to visit New York City."



Concept Identification: determine atomic graph for each word.

Relation Identification: add all edges with positive weight; then repeatedly add least negative edge that connects subgraphs.

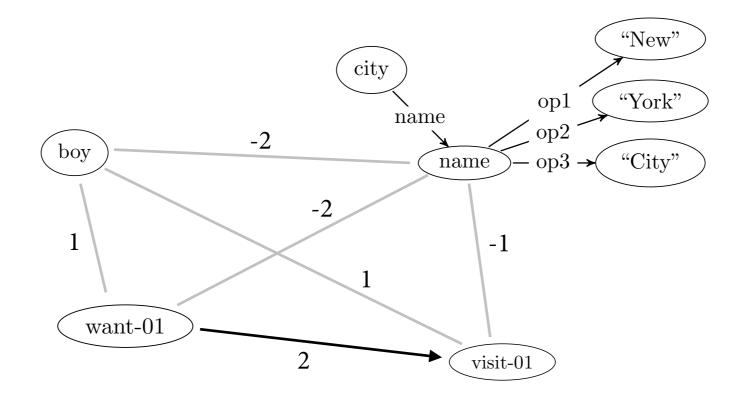
"The boy wants to visit New York City."



Concept Identification: determine atomic graph for each word.

Relation Identification: add all edges with positive weight; then repeatedly add least negative edge that connects subgraphs.

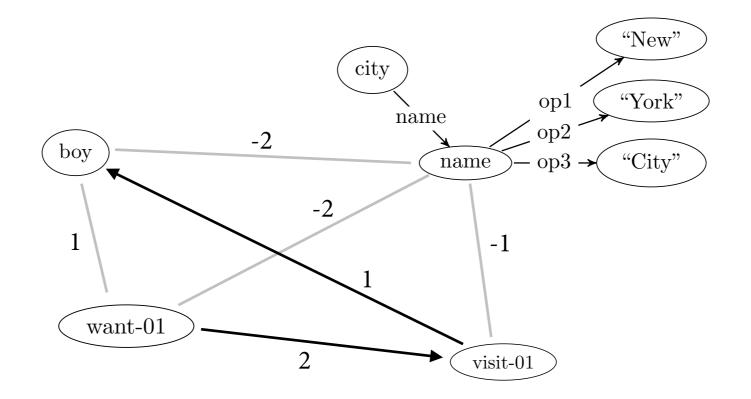
"The boy wants to visit New York City."



Concept Identification: determine atomic graph for each word.

Relation Identification: add all edges with positive weight; then repeatedly add least negative edge that connects subgraphs.

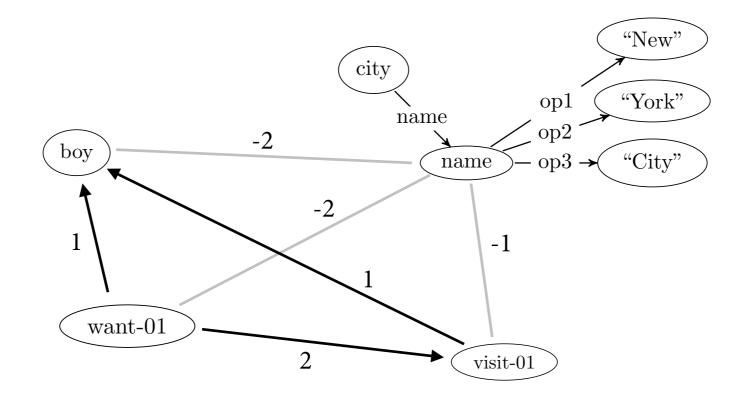
"The boy wants to visit New York City."



Concept Identification: determine atomic graph for each word.

Relation Identification: add all edges with positive weight; then repeatedly add least negative edge that connects subgraphs.

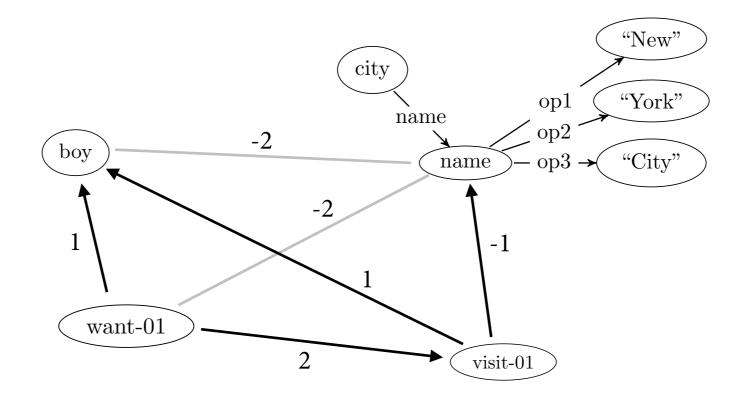
"The boy wants to visit New York City."



Concept Identification: determine atomic graph for each word.

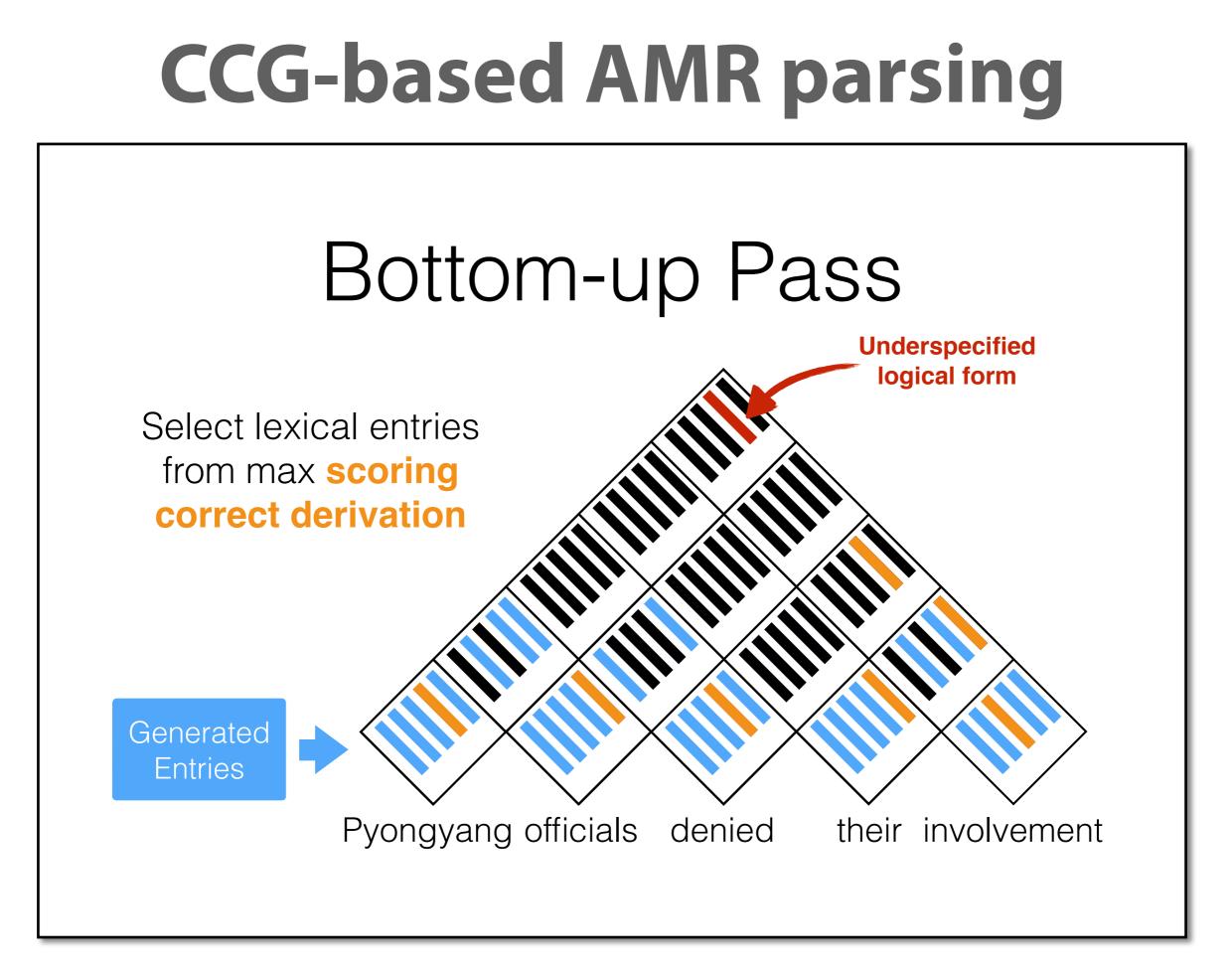
Relation Identification: add all edges with positive weight; then repeatedly add least negative edge that connects subgraphs.

"The boy wants to visit New York City."



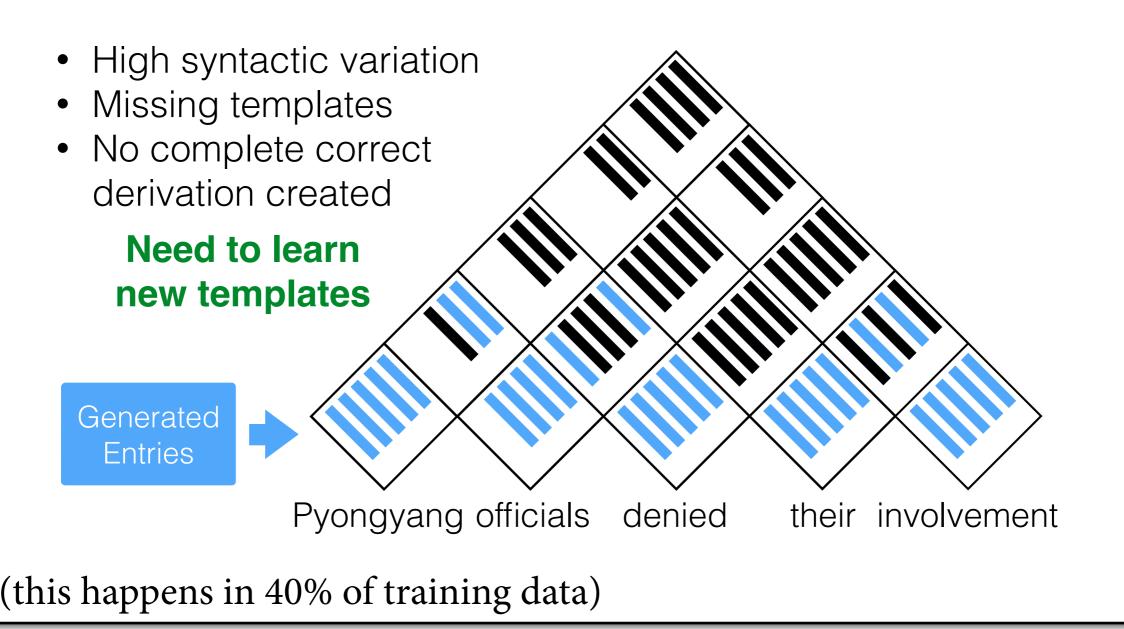
Concept Identification: determine atomic graph for each word.

Relation Identification: add all edges with positive weight; then repeatedly add least negative edge that connects subgraphs.



CCG-based AMR parsing

Common Failure



CCG-based AMR parsing

Splitting CCG Categories

Given a CCG category C : h:

1. Split logical form h to f and g s.t.:

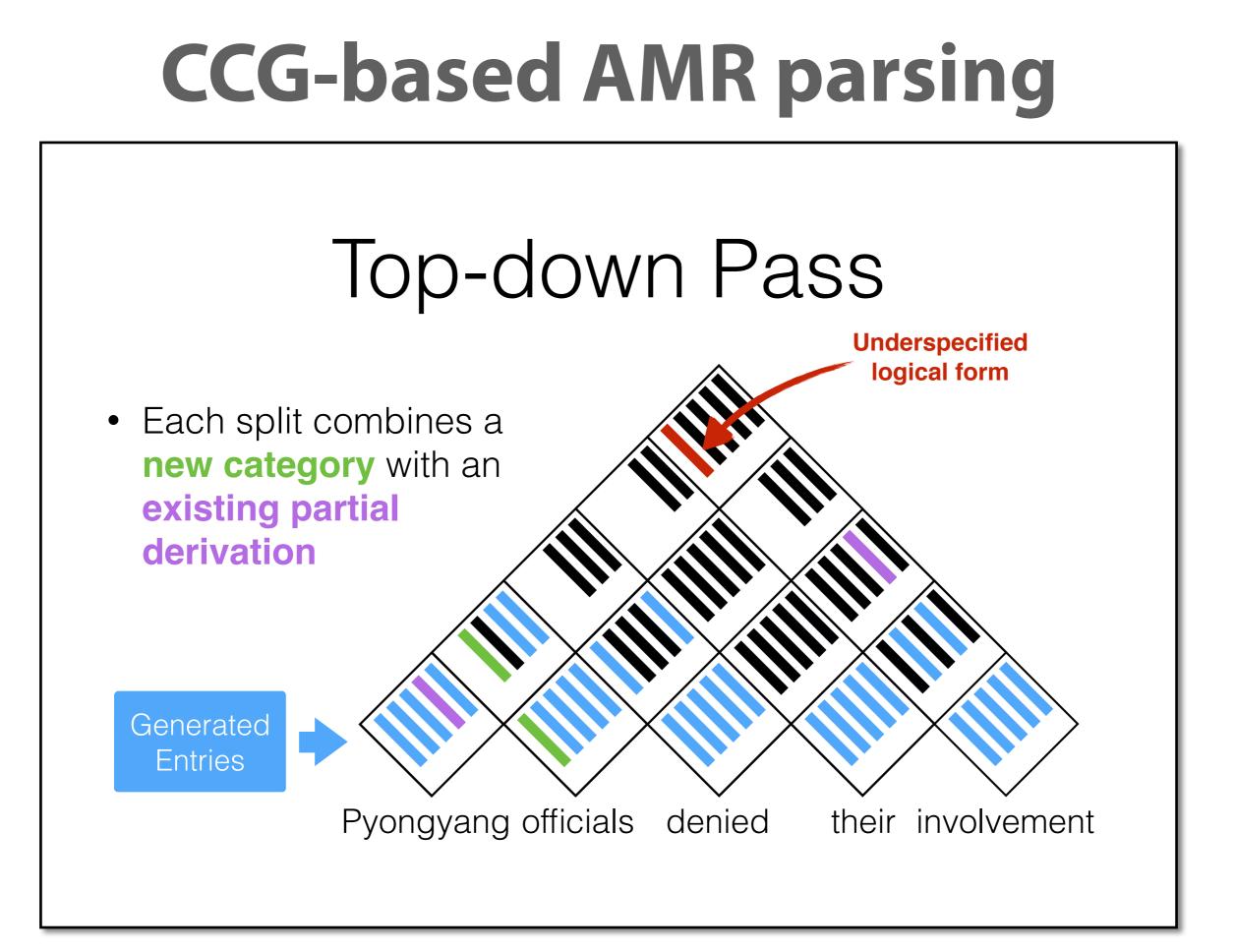
$$f(g) = h$$
 or $\lambda x.f(g(x)) = h$

2. Infer syntax from logical form type

 $NP_{[x]}/N_{[x]} : \lambda f.\lambda i.f(i) \land ARG1(i, \mathcal{R}(ID))$ $N_{[nb]} : \lambda i.involve-01(i)$

 $NP_{[nb]} : \lambda i.involve-01(i) \land$ ARG1($i, \mathcal{R}(ID)$)

 $NP_{[pl]} : \mathcal{R}(\text{ID})$ $NP_{[nb]} \setminus NP : \lambda x.\lambda i. \text{involve-}01(i) \land \text{ARG1}(i, x)$



Results

	P	R	F1
JAMR (fixed)	67.8	59.2	63.2
Our approach	66.8	65.7	66.3
Pre-release corpus results			
JAMR (Flanigan et al., 2014)	52.0	66.0	58.0
JAMR (fixed)	66.8	58.3	62.3
Wang et al. (2015)	64.0	62.0	63.0

 Table 1: Test SMATCH results.

(Artzi et al. 2015)

Conclusion

- Challenge in compositional semantic construction: Where do we get large-scale grammars?
- Semantic parsing: Learn such grammars from corpora with semantic annotations.
 - GeoQuery: small corpus of trees
 - AMRBank: new hotness
- Very active research topic right now.