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Last time

Say you come across some people who have been stabbed or poisoned.

You know that each of them was killed by a pirate or a ninja.

You can tell how each person died, but not by whom they were killed.
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Generative story

e We assume deaths are generated as follows:

(epia eni) ~ Dir (Ol, O() o
(bstipi> Ppolpi)> (Pstjni> Ppolni) ~ Dir(B, B) (<)

Z1, ..., Zx ~ Categorical(0) 2
w; ~ Categorical(¢i)

e That is:
» P(zi = pi) = Opi, P(zi = ni) = Oy @7_@

» if z; came out as “pi’, then P(wi = st) = ¢stpi

[ abbreviate 0 = (Qpb enl) (l)pl ((I)st|p1> (I)po|p1) (I)m ((l)st|n1> (I)po|n1)

a,  are assumed given and are called hyperparameters.



Supervised learning

If all killers are known, P(M | D) is easy to compute.
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P(M) = Dirg,qo(0) - Dirg,g(¢pi) - Dirg s(¢ni)
a—1 pa—1 p—1 B—1
X 9 6) qbs1:|p1 ¢po|pi ' qbs1:|1r11 ¢po|n1
P(D | M) = P(z = pi,w; = st, 20 = ni, wy = po)
— Hpi ) ¢St|pi . eni . ¢po|ni
P(M | D) « P(D | M) - P(M)

o B—1
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Gibbs Sampling

e Gibbs sampling is MCMC method for computing
expected values under posterior distribution.
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Let’s simplify

e To bring out today’s point more clearly, consider the
situation where all pirates and ninjas are observable
(unlike in LDA, where they are latent):

0 = (8,1, Oni) ~ Dir(cpi, ctni) ‘_@

Z1, ..., ZzN ~ Categorical(0) @
N

e Posterior after observations D =71, ..., zn:
P(H ‘ D) — Dirapi+npiaani+nni (9p17 Hnl)



Predictive distributions

so far today
@) () - (= [@ () @\J@
posterior predictive probability
PO | z1, ..., ZN) P(zx | z1, ..., Zx-1)




Predictive distribution

e We can determine the predictive distribution by
marginalizing over the model:

P(zi:pi|zl,...,zi1 — P —p1|M21,...,Z7;_1)°P(M|Zl,...,Zi_l)dM

(9p1 PM‘Zl, Zz_l)dM

Qupi + Qi + (7 — 1)

e Or equivalently, with a = ap; + oni and mpi = api / o

—1
npi Q- Tpi

ot (-1 at(-1

P(ZZ — pl ‘ AR Z@'_l) —



Teichmann Pocket Process

e Illustrate this distribution as follows:

4

left pocket contains ap; pirates, ani ninjas
right pocket contains a jokers
randomly draw a card from right pocket

if it is pirate or ninja, output that guy and put him and a
clone of him in right pocket

if it is joker, randomly draw a guy X from left pocket;
output X, put him back in left pocket, and put clone in right

o Officially called “Polya urn scheme’, but I prefer
Christoph Teichmann’s pocket metaphor.
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Teichmann Pocket Process

npi

P(z; =pi| 21,..., Zi—1) =
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Non-parametric models

e Key limitation of models so far: must specify
number K of topics / of killer types.

e Will now generalize this to a class of Bayesian
models that automatically pick as many killer types
as needed to fit data.

o (Called non-parametric models because number of
parameters not fixed in advance like in (0, ..., 0x).



Non-parametric models

e Idea: prob dist over infinite space of events.

» assume some base distribution G over these events

» add Polya-urn-style caching model on top of it

e Can simply adapt predictive distribution:

P(zi:k\zl,...,zi_l):

e Earlier pirate-ninja distribution:
G(pi) = Tlpi, G(ni) = 1, with Tlpi + Tlni = 1.
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Chinese Restaurant Process

o Alternative illustration (very popular in literature):

» Chinese restaurant with infinite sequence of tables,

each of which has infinite seating capacity.
n

(i —1)
table k (which has ni other people sitting at it).

» With probability " , customer i chooses to sit at

84
(1 —1
and label L for new table drawn at random from G(L).

» With probability P ) customer opens up new table,

table 1 table 2 table 3



Exchangeability

o The CRP is exchangeable: when computing
P(zi | z1), can pretend that z; is last event (and tables
have all customers from zi on them).

e Can therefore use predictive prob in two ways:

» as predictive prob, to predict next unseen event

» in Gibbs sampling, to resample z; based on the others

e De Finetti’s theorem: Exchangeable observations
are independent given some latent variables.

» for CRP, distribution over latent variables
is Dirichlet process

-0




Grammar induction

o Tree substitution grammar (TSG) is a grammar
formalism in which elementary trees are combined
using the substitution operation.

e In the Penn Treebank, we can only observe the
derived trees.

» Unclear how they were constructed from elementary trees.

e How can we induce a (probabilistic) TSG grammar
from the Penn Treebank trees?
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PTSG: Example
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TSG induction
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Why not EM?

e Our default method for learning with latent
variables L so far: Expectation Maximization (EM).

e EM tries to find maximum-likelihood estimate:

max P(D | p)
p

— mZ?XZP(L)‘P(D | L,p)

e This does not work for grammar induction:
Max-likelihood estimate makes each derived tree a
single elementary tree.

» Need prior on L to avoid this.



CRP for TSG

N _ -
reuse K: Pz =k|z,...,21) = a+72“§_1) new table: Pl =K~ +1]21z0) = S0
Pg

In full model (Cohn et al. 2010), there is a separate restaurant for each root symbol.
Also uses extension of CRP called the Pitman-Yor Process.



CRP for TSG

* J— . — n,; - P ,L'ZK_ 1 i— = a
reuse k: Plai=k |z, mi1) = b new table: P(z +1lz i) = T
°
Pg

In full model (Cohn et al. 2010), there is a separate restaurant for each root symbol.
Also uses extension of CRP called the Pitman-Yor Process.



CRP for TSG

(87
. o ' P = K~ 1 e Zil1) = ;
reuse K P(zi=k|z,...,201) = a+(z_1) new table: Fllz e mie) = ST
o
Pg

In full model (Cohn et al. 2010), there is a separate restaurant for each root symbol.
Also uses extension of CRP called the Pitman-Yor Process.



CRP for TSG

* J— . — n,; - P ,L'ZK_ 1 i— = a
reuse k: Plai =k 2, mi) = b new table: P(z t1l 2 5ie1) = T
S
@ A
NP VP
PN
VvV NP
haltes
Pg

In full model (Cohn et al. 2010), there is a separate restaurant for each root symbol.
Also uses extension of CRP called the Pitman-Yor Process.



CRP for TSG

N _ (87
reuse K: Pi=k|z,...,z54) = aﬁ;_ 3 new table: Plzi =K~ +1]z1...50) =
S
/\
NP VP
N
\Y NP
haltes
Pg

In full model (Cohn et al. 2010), there is a separate restaurant for each root symbol.
Also uses extension of CRP called the Pitman-Yor Process.



CRP for TSG

N _ (87
reuse K: Pi=k|z,...,z54) = aﬁ;_ 3 new table: Plzi =K~ +1]z1...50) =
S
/\
NP VP
N
\Y NP
haltes
Pg

In full model (Cohn et al. 2010), there is a separate restaurant for each root symbol.
Also uses extension of CRP called the Pitman-Yor Process.



CRP for TSG

N _ -
reuse K: Pz =k|z,...,21) = a+72“§_1) new table: Pl =K~ +1]21z0) = S0
Pg

In full model (Cohn et al. 2010), there is a separate restaurant for each root symbol.
Also uses extension of CRP called the Pitman-Yor Process.



CRP for TSG

N _ (87
reuse K: Pz =k|z,... z) = a+72“§_1) new table: Pzi=K +1|z,...,21) = Py Fa s
°
Pk

In full model (Cohn et al. 2010), there is a separate restaurant for each root symbol.
Also uses extension of CRP called the Pitman-Yor Process.



CRP for TSG

N _ (87
reuse K: Pz =k|z,... z) = a+72“§_1) new table: Pzi=K +1|z,...,21) = Py Fa s
°
Pk

In full model (Cohn et al. 2010), there is a separate restaurant for each root symbol.
Also uses extension of CRP called the Pitman-Yor Process.



CRP for TSG

ny,
a+(i—1)

reuse Ki Pz =k |z1,...,2.1) =

new table: P(zi= K~ +1]z,..

NP

. 7Zi—1) —

George

(87

a4+ (i—1)

In full model (Cohn et al. 2010), there is a separate restaurant for each root symbol.

Also uses extension of CRP called the Pitman-Yor Process.



CRP for TSG

reuse K: Pz =k|z,...,21) = - +”’Z§_ 3 new table: Pzi=K~ +1|2,...,2i1) =
®
NP
|
George N
|
George

(87

a4+ (i—1)

In full model (Cohn et al. 2010), there is a separate restaurant for each root symbol.

Also uses extension of CRP called the Pitman-Yor Process.



CRP for TSG

* J— . — n,; - P P = K~ 1 “e i— = a
reuse K: Pi=k|z,...,z54) = o new table: P(z +1lz i) = T
®
NP
|
George
P
S
N
NP VP NP
PN + |
V. NP George
|
hates

In full model (Cohn et al. 2010), there is a separate restaurant for each root symbol.
Also uses extension of CRP called the Pitman-Yor Process.



CRP for TSG

* J— . — n,; - P P = K~ 1 “e i— = a
reuse K: Pi=k|z,...,z54) = o new table: P(z +1lz i) = T
® ®
NP
|
George
P
S
N
NP VP NP
PN + |
V. NP George
|
hates

In full model (Cohn et al. 2010), there is a separate restaurant for each root symbol.
Also uses extension of CRP called the Pitman-Yor Process.



CRP for TSG

* J— . — n,; - P P = K~ 1 “e i— = a
reuse K: Pi=k|z,...,z54) = o new table: P(z +1lz i) = T
® ®
NP
|
George
P
S
N
NP VP NP
PN + |
V. NP George
|
hates

In full model (Cohn et al. 2010), there is a separate restaurant for each root symbol.
Also uses extension of CRP called the Pitman-Yor Process.



CRP for TSG

* - : — n,; - P i = K~ 1 ey Zi—1) = a
reuse K: Pi=k|z,...,z54) = o new table: P(z +1lz i) = T
® ®
NP
| NP
George |
broccoli
P
S
N
NP VP NP
P + |
V. NP George
|
hates

In full model (Cohn et al. 2010), there is a separate restaurant for each root symbol.
Also uses extension of CRP called the Pitman-Yor Process.



CRP for TSG

* J— . — n,; - P Z:K_—Fl 7 = a
reuse K Ple=k| 2 zmin) = — =y new table: P(z |21, 200) = ST
o o
NP NP
| | NP
George broccoli |
broccoli
Pg
S
/\
NP VP NP
PN + |
V. NP George
|
hates

In full model (Cohn et al. 2010), there is a separate restaurant for each root symbol.
Also uses extension of CRP called the Pitman-Yor Process.



CRP for TSG

* J— . — n,; - P P = K~ 1 “e i— = a
reuse Ki Pzi=k|z,...,21) = T new table: P(z F1la o mm1) = ST
o o
NP NP
| |
George broccoli
Pg
S
TN
NP VP NP NP
N + | + |
\|/ NP George broccoli
hates

In full model (Cohn et al. 2010), there is a separate restaurant for each root symbol.
Also uses extension of CRP called the Pitman-Yor Process.



CRP for TSG

* J— . — n,; - P P = K~ 1 “e i— = a
reuse ki Pi=k|z, ..., z21) = T new table: P(z F1la o mm1) = ST
o o
NP NP
| |
George broccoli
Pg
S
S /\
NV NP NP NP VP
o~ o+ + — | PN
\|/ NP George broccoli George V NP
hates ‘ ‘
hates broccoli

In full model (Cohn et al. 2010), there is a separate restaurant for each root symbol.
Also uses extension of CRP called the Pitman-Yor Process.



Base distribution for e-trees

e Prob dist over infinite set of e-trees; prob decays
exponentially with size of e-tree (hence sum to 1).

4 )
I—SC SCf Pc(a‘C/) ’
zEI e/ EF e) c—>oc€e \

G D,

prob that e-tree creation base distribution over
stops with category ¢; of i context-free rules for ¢’

e Also need to specity distribution Pc over cf. rules.



Gibbs Sampling for TSGs

Gibbs state: nodes marked as 1 (substitution site) or O (inside e-tree)
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Gibbs Sampling for TSGs

Gibbs state: nodes marked as 1 (substitution site) or O (inside e-tree)
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Grammar induction

e Using Gibbs sampler, we can sample from posterior,
given PTB as observations.

e We want to learn how to parse new strings with
PTSG. Can do this in various ways, e.g.:

» estimate expected values of PTSG parameters 0 with Gibbs

» include sentence to be parsed in Gibbs sampling and return
most frequent tree (MPT, MPD in Cohn et al.)



Results

<40 all
Parser F1 EX F1 EX
MLE PCFG 642 72 63.1 6.7
TSG PYP Viterbi 83.6 246 8277 229
TSG PYP MPD 842 272 833 254
TSG PYP MPT 847 280 838 262
TSG PYP MER 854 272 847 258
DOP (Zuidema, 2007) 83.8 269
Berkeley parser (Petrov and Klein, 2007) 90.6 90.0
Berkeley parser (restricted) 873 310 866 290
Reranking parser (Charniak and Johnson, 2005) 92.0 914
Shindo et al., 2012 (single) 91.6 91.1
Shindo et al., 2012 (multiple) 92.9 92.4




Conclusion

e Predictive probabilities:

» integrate posterior distribution over models

» yields intuitive stochastic processes (Polya)

o Extend to non-parametric models:

» distributions over infinite domains with caching

» Chinese Restaurant Process, Pitman-Yor

e Apply to grammar induction, e.g. for TSGs.



