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Topic models

given: raw documentslearn: word probs. 
for (abstract) topics 

learn: topic mixture  
in each document

(Blei, Comm. ACM 12)



Last time
Say you come across some people who have been stabbed or poisoned. 
You know that each of them was killed by a pirate or a ninja. 
You can tell how each person died, but not by whom they were killed.



Generative story

• We assume deaths are generated as follows:  
 
(θpi, θni) ~ Dir(α, α) 
(ϕst|pi, ϕpo|pi), (ϕst|ni, ϕpo|ni) ~ Dir(β, β) 
z1, …, zK ~ Categorical(θ)  
wi ~ Categorical(ϕzi) 

• That is: 
‣ P(zi = pi) = θpi, P(zi = ni) = θni 

‣ if zi  came out as “pi”, then P(wi = st) = ϕst|pi
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I abbreviate θ = (θpi, θni), ϕpi = (ϕst|pi, ϕpo|pi), ϕni = (ϕst|ni, ϕpo|ni). 
α, β are assumed given and are called hyperparameters.
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Supervised learning
If all killers are known, P(M | D) is easy to compute.
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Gibbs Sampling

• Gibbs sampling is MCMC method for computing 
expected values under posterior distribution.
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Let’s simplify

• To bring out today’s point more clearly, consider the 
situation where all pirates and ninjas are observable 
(unlike in LDA, where they are latent):  
 
θ = (θpi, θni) ~ Dir(αpi, αni) 
z1, …, zN ~ Categorical(θ) 

• Posterior after observations D = z1, …, zN:

z
N

θ α

P (✓ | D) = Dir↵pi+npi,↵ni+nni(✓pi, ✓ni)



Predictive distributions

so far today
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posterior 
P(θ | z1, …, zN)

zN-1

predictive probability  
P(zN | z1, …, zN-1)



Predictive distribution

• We can determine the predictive distribution by 
marginalizing over the model: 
 
 
 
 
 

• Or equivalently, with α = αpi + αni and πpi = αpi / α: 

P (zi = pi | z1, . . . , zi�1) =

Z
P (zi = pi | M, z1, . . . , zi�1) · P (M | z1, . . . , zi�1) dM

=

Z
✓pi · P (M | z1, . . . , zi�1) dM

= . . .

=
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pi
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Teichmann Pocket Process

• Illustrate this distribution as follows: 
‣ left pocket contains αpi pirates, αni ninjas 

‣ right pocket contains α jokers 

‣ randomly draw a card from right pocket 

‣ if it is pirate or ninja, output that guy and put him and a 
clone of him in right pocket 

‣ if it is joker, randomly draw a guy X from left pocket; 
output X, put him back in left pocket, and put clone in right 

• Officially called “Polya urn scheme”, but I prefer 
Christoph Teichmann’s pocket metaphor.
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Non-parametric models

• Key limitation of models so far: must specify 
number K of topics / of killer types. 

• Will now generalize this to a class of Bayesian 
models that automatically pick as many killer types 
as needed to fit data. 

• Called non-parametric models because number of 
parameters not fixed in advance like in (θ1, …, θK).



Non-parametric models

• Idea: prob dist over infinite space of events. 
‣ assume some base distribution G over these events 

‣ add Polya-urn-style caching model on top of it 

• Can simply adapt predictive distribution: 

• Earlier pirate-ninja distribution:  
G(pi) = πpi, G(ni) = πni with πpi + πni = 1.
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Chinese Restaurant Process

• Alternative illustration (very popular in literature): 
‣ Chinese restaurant with infinite sequence of tables, 

each of which has infinite seating capacity. 

‣ With probability                     , customer i chooses to sit at 

table k (which has nk-i other people sitting at it). 

‣ With probability                      customer opens up new table, 

and label L for new table drawn at random from G(L). 

n�i
k

↵+ (i� 1)

↵

↵+ (i� 1)

…

table 1 table 2 table 3



Exchangeability

• The CRP is exchangeable: when computing  
P(zi | z-i), can pretend that zi is last event (and tables 
have all customers from z-i on them). 

• Can therefore use predictive prob in two ways: 
‣ as predictive prob, to predict next unseen event 

‣ in Gibbs sampling, to resample zi based on the others 

• De Finetti’s theorem: Exchangeable observations 
are independent given some latent variables. 
‣ for CRP, distribution over latent variables 

 is Dirichlet process



Grammar induction

• Tree substitution grammar (TSG) is a grammar 
formalism in which elementary trees are combined 
using the substitution operation. 

• In the Penn Treebank, we can only observe the 
derived trees. 
‣ Unclear how they were constructed from elementary trees. 

• How can we induce a (probabilistic) TSG grammar 
from the Penn Treebank trees?
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Figure 1: Example derivations for the same tree, where arrows indicate substitution sites. The
left figures (a) and (c) show two different derivations and the right figures (b) and (d) show the
elementary trees used in the respective derivation.

respectively, where tree(e) returns the tree for the derivation e and yield(t) returns the string of
terminal symbols at the leaves of t.

Estimating a PTSG requires learning the sufficient statistics for P(e|c) in (1) based on a training
sample. Estimation has been done in previous work in a variety of ways, for example using heuristic
frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 2000) and heldout estimation
(Prescher et al., 2004). Parsing involves finding the most probable tree for a given string, that is,
argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms for parsing have been
reported, most notably a Monte-Carlo approach for finding the maximum probability tree (Bod,
1995) and a technique for maximising labelled recall using inside-outside inference in a PCFG
reduction grammar (Goodman, 1998).

2.1 Dependency Grammars

Due to the wide availability of annotated treebanks, phrase structure grammars have become a pop-
ular formalism for building supervised parsers, and we will follow this tradition by using phrase
structure trees from the Wall Street Journal corpus (Marcus et al., 1993) as the basis for our su-
pervised grammar induction experiments (grammar refinement). However, the choice of formalism
for unsupervised induction is a more nuanced one. The induction of phrase-structure grammars is
notoriously difficult, since these grammars contain two kinds of ambiguity: the constituent structure
and the constituent labels. In particular, constituent labels are highly ambiguous: firstly we don’t
know a priori how many there are, and secondly labels that appear high in a tree (e.g., an S category
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respectively, where tree(e) returns the tree for the derivation e and yield(t) returns the string of
terminal symbols at the leaves of t.

Estimating a PTSG requires learning the sufficient statistics for P(e|c) in (1) based on a training
sample. Estimation has been done in previous work in a variety of ways, for example using heuristic
frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 2000) and heldout estimation
(Prescher et al., 2004). Parsing involves finding the most probable tree for a given string, that is,
argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms for parsing have been
reported, most notably a Monte-Carlo approach for finding the maximum probability tree (Bod,
1995) and a technique for maximising labelled recall using inside-outside inference in a PCFG
reduction grammar (Goodman, 1998).

2.1 Dependency Grammars

Due to the wide availability of annotated treebanks, phrase structure grammars have become a pop-
ular formalism for building supervised parsers, and we will follow this tradition by using phrase
structure trees from the Wall Street Journal corpus (Marcus et al., 1993) as the basis for our su-
pervised grammar induction experiments (grammar refinement). However, the choice of formalism
for unsupervised induction is a more nuanced one. The induction of phrase-structure grammars is
notoriously difficult, since these grammars contain two kinds of ambiguity: the constituent structure
and the constituent labels. In particular, constituent labels are highly ambiguous: firstly we don’t
know a priori how many there are, and secondly labels that appear high in a tree (e.g., an S category
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argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
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Why not EM?

• Our default method for learning with latent 
variables L so far: Expectation Maximization (EM). 

• EM tries to find maximum-likelihood estimate:  

• This does not work for grammar induction:  
Max-likelihood estimate makes each derived tree a 
single elementary tree. 
‣ Need prior on L to avoid this.

max

p
P (D | p)

= max

p

X

L

P (L) · P (D | L, p)
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sample. Estimation has been done in previous work in a variety of ways, for example using heuristic
frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 2000) and heldout estimation
(Prescher et al., 2004). Parsing involves finding the most probable tree for a given string, that is,
argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms for parsing have been
reported, most notably a Monte-Carlo approach for finding the maximum probability tree (Bod,
1995) and a technique for maximising labelled recall using inside-outside inference in a PCFG
reduction grammar (Goodman, 1998).
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sample. Estimation has been done in previous work in a variety of ways, for example using heuristic
frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 2000) and heldout estimation
(Prescher et al., 2004). Parsing involves finding the most probable tree for a given string, that is,
argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms for parsing have been
reported, most notably a Monte-Carlo approach for finding the maximum probability tree (Bod,
1995) and a technique for maximising labelled recall using inside-outside inference in a PCFG
reduction grammar (Goodman, 1998).
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ular formalism for building supervised parsers, and we will follow this tradition by using phrase
structure trees from the Wall Street Journal corpus (Marcus et al., 1993) as the basis for our su-
pervised grammar induction experiments (grammar refinement). However, the choice of formalism
for unsupervised induction is a more nuanced one. The induction of phrase-structure grammars is
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terminal symbols at the leaves of t.

Estimating a PTSG requires learning the sufficient statistics for P(e|c) in (1) based on a training
sample. Estimation has been done in previous work in a variety of ways, for example using heuristic
frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 2000) and heldout estimation
(Prescher et al., 2004). Parsing involves finding the most probable tree for a given string, that is,
argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms for parsing have been
reported, most notably a Monte-Carlo approach for finding the maximum probability tree (Bod,
1995) and a technique for maximising labelled recall using inside-outside inference in a PCFG
reduction grammar (Goodman, 1998).

2.1 Dependency Grammars

Due to the wide availability of annotated treebanks, phrase structure grammars have become a pop-
ular formalism for building supervised parsers, and we will follow this tradition by using phrase
structure trees from the Wall Street Journal corpus (Marcus et al., 1993) as the basis for our su-
pervised grammar induction experiments (grammar refinement). However, the choice of formalism
for unsupervised induction is a more nuanced one. The induction of phrase-structure grammars is
notoriously difficult, since these grammars contain two kinds of ambiguity: the constituent structure
and the constituent labels. In particular, constituent labels are highly ambiguous: firstly we don’t
know a priori how many there are, and secondly labels that appear high in a tree (e.g., an S category
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frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 2000) and heldout estimation
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argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms for parsing have been
reported, most notably a Monte-Carlo approach for finding the maximum probability tree (Bod,
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Base distribution for e-trees

• Prob dist over infinite set of e-trees; prob decays 
exponentially with size of e-tree (hence sum to 1).  
 
 
 
 

• Also need to specify distribution PC over cf. rules.

INDUCING TREE SUBSTITUTION GRAMMARS

before, the − superscript denotes that the counts are calculated over the previous elementary trees,
e−i, and their seating arrangements, z−i.

Finally, we turn to the definition of the base distribution over elementary trees, PE. Recall that
in an elementary tree, each internal node is labelled with a non-terminal category symbol and each
frontier (leaf) node is labelled with either a non-terminal or a terminal symbol. Given a probabilistic
context-free grammar R, we assume that elementary trees are generated (conditioned on the root
non-terminal c) using the following generative process. First, choose a PCFG production c→ α
for expanding c according to the distribution given by R. Next, for each non-terminal in α decide
whether to stop expanding (creating a non-terminal frontier node, also known as a substitution site)
or to continue expanding. If the choice is to continue expanding, a new PCFG production is chosen
to expand the child, and the process continues recursively. The generative process completes when
the frontier is composed entirely of substitution sites and terminal symbols.

Assuming a fixed distribution PC over the rules in R, this generative process leads to the follow-
ing distribution over elementary trees:

PE(e|c) = ∏
i∈I(e)

(1− sci) ∏
f∈F(e)

sc f ∏
c′→α∈e

PC(α|c′) , (7)

where I(e) are the set of internal nodes in e excluding the root, F(e) are the set of frontier non-
terminal nodes, ci is the non-terminal symbol for node i and sc is the probability of stopping ex-
panding a node labelled c. We treat sc as a parameter which is estimated during training, as de-
scribed in Section 4.3. In the supervised case it is reasonable to assume that PC is fixed; we simply
use the maximum-likelihood PCFG distribution estimated from the training corpus (i.e., PC(α|c′) is
simply the relative frequency of the rule c′ → α). In the unsupervised case, we will infer PC; this
requires extending the model to assume that PC is itself drawn from a PYP prior with a uniform base
distribution. We describe this extension below, along with its associated changes to equation 14.

The net effect of our base distribution is to bias the model towards simple rules with a small
number of internal nodes. The geometric increase in cost associated with the stopping decisions
discourages the model from using larger rules; for these rules to be included they must occur very
frequently in the corpus. Similarly, rules which use high-probability (frequent) CFG productions
are favoured. It is unclear if these biases are ideal: we anticipate that other, more sophisticated
distributions would improve the model’s performance.

In the unsupervised setting we no longer have a training set of annotated trees and therefore do
not have a PCFG readily available to use as the base distribution in Equation 7. For this reason we
extend the previous model to a two level hierarchy of PYPs. As before, the topmost level is defined
over the elementary tree fragments (Gc) with the base distribution (PE) assigning probability to the
infinite space of possible fragments. The model differs from the supervised one by defining PC
in (7) using a PYP prior over CFG rules. Accordingly the model can now infer a two level hierarchy
consisting of a PCFG embedded within a TSG, compared to the supervised parsing model which
only learnt the TSG level with a fixed PCFG. Formally, each CFG production is drawn from7

Hc|a′c,b
′
c ∼ PYP(a′c,b′c,Uniform(·|c))

α|c,Hc ∼ Hc , (8)

7. As we are using a finite base distribution over CFG productions, we could use a Dirichlet instead of the PYP presented
in (8). However we elect to use a PYP because it is more general, having additional expressive power from its
discounting behaviour.
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Gibbs Sampling for TSGs
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Grammar induction

• Using Gibbs sampler, we can sample from posterior, 
given PTB as observations. 

• We want to learn how to parse new strings with 
PTSG. Can do this in various ways, e.g.: 
‣ estimate expected values of PTSG parameters θ with Gibbs 

‣ include sentence to be parsed in Gibbs sampling and return 
most frequent tree (MPT, MPD in Cohn et al.)



Results
COHN, BLUNSOM AND GOLDWATER

≤ 40 all

Parser F1 EX F1 EX

MLE PCFG 64.2 7.2 63.1 6.7

TSG PYP Viterbi 83.6 24.6 82.7 22.9
TSG PYP MPD 84.2 27.2 83.3 25.4
TSG PYP MPT 84.7 28.0 83.8 26.2
TSG PYP MER 85.4 27.2 84.7 25.8

DOP (Zuidema, 2007) 83.8 26.9
Berkeley parser (Petrov and Klein, 2007) 90.6 90.0
Berkeley parser (restricted) 87.3 31.0 86.6 29.0
Reranking parser (Charniak and Johnson, 2005) 92.0 91.4

Table 4: Full treebank testing results showing labelled F1 and exact match accuracy for sentences
of up to 40 words, and for all sentences. The results of several treebank parsers are also shown (as
reported in the literature, hence the missing values), representing a baseline (PCFG), systems similar
to our own (DOP, Berkeley) and state-of-the-art (Berkeley, Reranking parser). Berkeley (restricted)
uses simplified data preprocessing as compared to Berkeley; the simplified preprocessing is the
same as used in our system, so provides a more fair comparison.

threshold, which impedes the model’s ability to learn highly lexicalized fragments. The grammar
sizes are not strictly comparable, because we are comparing different types of grammar. For our
TSG models we report the number of CFG productions in the transformed MAP PCFG, in which
non-zero count TSG rules typically rewrite as many CFG rules17 and CFG rules from the base
distribution are replicated up to four times. Nevertheless the trend is clear: our model produces
similar results to a state-of-the-art parser, and does so using a similar sized grammar. With additional
rounds of split-merge training the Berkeley grammar grows exponentially larger (200K rules after
six iterations). Our TSG grammar is also far smaller than the full DOP grammar induced from this
data set, which extracts every possible TSG rule from the training set with no size limit, and has
approximately 700K rules.

6.2 Full Treebank

We now train the model on the full training partition of the Penn treebank, using sections 2–21 (see
Table 2 for corpus statistics). We initialise the sampler using a converged model from the end of
a sampling run on the small data set and run the blocked Metropolis Hastings sampler for 20,000
iterations. The MAP PCFG approximation had 156k productions and training took 1.2 million
seconds in total or 61 seconds per iteration.18 We repeated this three times and present the averaged
results in Table 4.

17. The encoding of TSG rules could be made more compact by skipping the internal rewrite steps, instead directly
rewriting the transformed root node as the rule’s frontier. This would mean that each input TSG rule would produce
only two rules in the transformed CFG. It would also affect the choice of parsing algorithm because the transformed
grammar would no longer be binary.

18. Measured using a single core of an AMD Opteron 2.6GHz machine.
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Shindo et al., 2012 (single) 91.6 91.1
Shindo et al., 2012 (multiple) 92.9 92.4



Conclusion

• Predictive probabilities: 
‣ integrate posterior distribution over models 

‣ yields intuitive stochastic processes (Polya) 

• Extend to non-parametric models: 
‣ distributions over infinite domains with caching 

‣ Chinese Restaurant Process, Pitman-Yor 

• Apply to grammar induction, e.g. for TSGs.


