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Today

e Todayss lecture is about a method called
Latent Dirichlet Allocation (LDA).

e We care about it for two reasons:

» It's an unsupervised method for identitying topics
and words that are representative of them.

» It's a showcase for a family of statistical models called
Bayesian models which have many uses in CL.



Let’s start simple

You and I are playing a coin-tossing game.
[ see you throw 63x H, 37x T.
Should I believe that the coin is fair?

Our model of the coin has one parameter, p = P(H).

Maximum-likelihood estimate: p = 0.63, i.e. not fair.

But what about

» my uncertainty about p?

» my prior beliefs about the fairness of the coin?



Bayesian Models

e ML estimation and similar methods deliver
point estimates: a single value for each parameter
that optimizes some criterion (e.g. likelihood).

e Bayesian models: assume a probability distribution
over parameters and estimate the shape of the pd.
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assume a prior over parameters, which encodes beliefs in
parameter values before making any observations

update prior to posterior after making some observations

uncertainty about parameter values is reflected at all times
in the pd



The Dirichlet distribution

o Take the parameter p itself as the value of a random
variable.

» need a probability distribution over real numbers;
more specifically, over tuples of numbers that sum to one

e We use the Dirichlet distribution.

P1, ..., Pk ~ Dir(ay, ..., ax) means:
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(needed to normalize to 1) hyperparameters



The D|r|chlet distribution
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Bayesian parameter estimation

e We are interested in pd P(M) over our model M = (p).
This model is very simple; will make more complex later.

e Before we make any observations, we have a
prior distribution: P(M) = Dirq«(p, 1-p)

e We can then update this to a posterior distribution
based on observed data:

P(M]D):P(D‘M)'P(M) x P(D| M)-P(M)

/o SN

posterior likelihood prior




Calculating posteriors

prior: P(p) = Dirg o(p,1 —p) o p*~ - (1 —p)*~1

likelihood: PixHkEkxT|p) =p"-(1—ph

posterior; P(p‘iXH,kXT)O(P(iXH,kXT|p)-P(p)
xp' - (L—p)*-p* ' (1—p)*!
_ pi—|—Oé—1 ) (1 _p)k—l—a—l

More precisely, we have:

Pp|txH,kxT)=Dirqg+; at+x(p, 1 —p)
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Conjugate distributions

o Crucially, P(M) and P(M | D) have the same shape
(product of Dirichlets). This is because Dirichlet and
Categorical are conjugate distributions.

» because K = 2 for the coin, we really only used the Beta
(not Dirichlet) and Bernoulli (not Categorical) distributions

o This is makes the math very convenient.

e The hyperparameters of the Dirichlets are updated by
adding the observed counts to the hp. of the priors.

» priors thus perform smoothing in a very principled way



The next step

Say you come across some people who have been stabbed or poisoned.
You know that each of them was killed by a pirate or a ninja.
You can tell how each person died, but not by whom they were killed.
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Our task

e We observe N people with their causes of death.

o Questions we are interested in:
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Who killed each villager?
Z1y, ...y LN € {pi, Ili}

How many were killed by pirates, how many by ninjas?
P(pi) = Opi, P(ni) = On;; thus, Opi + Oni = 1

How likely is it that a pirate chooses to stab someone?
P(st | pi) = stfpis thus, P(po | pi) = Gpojpi = 1 - Pstlpi

How likely is it that a ninja chooses to stab someone?
P(St | Ill) —_ (I)st|ni; thus, P(pO | Ill) —_ (')polni — 1 - (')st|ni



Fundamental approach

e Goal: Bayesian model with parameters 0, ¢pi, Pni.

» maximum likelihood: try to estimate concrete values for
each parameter

» Bayesian: estimate probability distribution P(0, dpi, dni)



Generative story: Idea
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Generative story

e We assume deaths are generated as follows:

(epia eni) ~ Dir (Ol, O() o
(bstipi> Ppolpi)> (Pstjni> Ppolni) ~ Dir(B, B) (<)

Z1, ..., Zx ~ Categorical(0) 2
w; ~ Categorical(¢i)

e That is:
» P(zi = pi) = Opi, P(zi = ni) = Oy @7_@

» if z; came out as “pi’, then P(wi = st) = ¢stpi

[ abbreviate 0 = (Qpb enl) (l)pl ((I)st|p1> (I)po|p1) (I)m ((l)st|n1> (I)po|n1)

a,  are assumed given and are called hyperparameters.



Supervised learning

If all killers are known, P(M | D) is easy to compute.

| ®
&

P(M) = Dirg,qo(0) - Dirg,g(¢pi) - Dirg s(¢ni)
a—1 pa—1 p—1 B—1
X 9 6) qbs1:|p1 ¢po|pi ' qbs1:|1r11 ¢po|n1
P(D | M) = P(z = pi,w; = st, 20 = ni, wy = po)
— Hpi ) ¢St|pi . eni . ¢po|ni
P(M | D) « P(D | M) - P(M)

o B—1
OCHP ¢St|pl ¢po|p1 ¢st|n1 ¢po|n1

O<Difa+1,a+1(9) Dirgy1,5(¢pi) - Dirg,g11(¢ni)

a=(1,1)

0,1)  (0.5,0.5)

=2,2 a=(21)

(0,1)  (0.5,0.5) (1,0 0,1)  (0.5,0.5)  (1,0)




Unsupervised learning

e In the original scenario, we can only observe

deaths, not killers. Then P(D | M) i| = wi
is less convenient: 1| w | D
P(D | M) = P(w = st,ws = po) 2 | % R

- Z P(z1 = k1, w1 = st, 22 = kg, w2 = po)

k1 ,kgE{pi,ni}

e 'This sums over a number of terms that is

exponential in N, and thus infeasible to compute.

In practice, we compute only expected values under
P(M | D), and only approximately, using sampling.




Expected values

o Lets extend our model a bit: M = (6, ¢pi, Gni, Z1, ... ZN).
Data now only consists of D = (w1, ..., wn).

o Useful expected values of functions (M, D):

expected value of pirate/ninja mixing proportion

Ep i) [0pi] = / P(M|D) - 0,3(M) dM

expected value of pirate habits

Ep(m D) @st)pi) = /P<M’D) * Gstpi(M) dM

expected value = probability that first villager was killed by a pirate
Epvpylz1 = pi] = /P(M | D) - |z1(M) = pi| dM




Gibbs Sampling

o Gibbs sampling is a Markov Chain Monte Carlo
(MCMC) method for estimating such expectations.

e Atany time t, we are in a state and make a random
transition into some other state.

» state in Gibbs sampler is guess of hidden variables




Gibbs Sampling

e Fundamental idea of Gibbs sampling:

» split state into smaller blocks

» in each step, resample one block based on all others
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e Fundamental idea of Gibbs sampling:

» split state into smaller blocks

Gibbs Sampling

» in each step, resample one block based on all others
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e Fundamental idea of Gibbs sampling:

» split state into smaller blocks

Gibbs Sampling

» in each step, resample one block based on all others
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Gibbs Sampling

e Fundamental idea of Gibbs sampling:

» split state into smaller blocks

» in each step, resample one block based on all others
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Gibbs Sampling

Transition probabilities must be the true conditional
probabilities P(z; | w, z.).

Then can be shown that after a certain point, prob of
visiting a state M is close to true probability P(M | D).

Thus, can approximate expected value of some
function f(M, D) under P(M | D) by sampling M’s
and taking mean of (M, D) in visited states.

In practice: Simply evaluate {(M, D) in a few, or even
a single, late sample.



Transition probabilities

[t remains to determine the transition probabilities
P(Zi | W, Z-i).

Formula turns out to be remarkably simple:

P(z; =pi|w,z_;) x P(w,z_;, 2z = pi)

:// (w, 21, 2 = pi. 0, 6) df do

(=1)
_ Npiw; T Buw,
x (ni” + api) 7 P
e o T+ B
# people other than i that # people other than i
were killed by pirates that were killed by pirates

in current sample using method w’



Topic models

Topic proportions and

Topics Documents assignments
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learn: word probs. <«— given: raw documents — learn: topic mixture
for (abstract) fopics in each document



Latent Dirichlet Allocation

e Topic modeling is almost the same problem as the

pirate/ninja problem: @
» abstract topics = {pirate, ninja} v
» words in document = {stabbed, poisoned}
8
e Full LDA makes two changes: -
» can have T topics instead of just two, <
and also more than two difterent words @ g
» there are M > 1 documents, and each document
4—
can have its own mixture 04 of topics @ T _@




Gibbs sampler for LDA

# t occurs in document

# t occurs with word wi . S
that contains position i,

prob of reassigning except at position i SIHOL
token #i as topic t \ except at position 1
\ /
\ \( ) ( )
Wy d
n_; T + 5 —|— @

Plae =tz n W n(d)+T a

—

# t occurs anywhere in corpus, # tokens in that document,
except at position i minus one (for position i)

W = vocabulary size / T = number of topics

(Grifhths & Steyvers 2004)



Examples

(Blei 2012)
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Topics

“Genetics”
human
genome
dna
genetic
genes
sequence
gene
molecular
sequencing
map
information
genetics
mapping
project
sequences

“Evolution”
evolution
evolutionary
species
organisms
life
origin
biology
groups
phylogenetic
living
diversity
group
new
two
common

“Disease”
disease
host
bacteria
diseases
resistance
bacterial
new
strains
control
infectious
malaria
parasite
parasites
united
tuberculosis

“Computers”
computer
models
information
data
computers
system
network
systems
model
parallel
methods
networks
software
new
simulations

topic mixture for

one article in Science

15 words with highest ¢

for each topic over whole corpus

(with made-up topic label)




Examples

development of topics from Science over time (1880-2002)
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(Blei 2012)




Conclusion

e LDA and extensions for topic modeling.

» Topics interesting in their own right,
also useful in various applications.

» Simplest useful Bayesian model in NLP.

e We used Gibbs sampling to approximate integral.

» Alternative is Variational Bayes: approximate P(M|D) on
paper, then solve integral exactly.

e Limitation: Number T of topics must be given.
We will fix this next time.



