Machine Translation 2: Phrase-Based Translation

Computational Linguistics

Alexander Koller

05 January 2018

slides contain material from <u>mt-class.org</u>

Translation quality

- We can measure quality of a translation in two dimensions:
 - *Adequacy:* How accurately does translation represent the meaning of the original?
 - Fluency: Is the translation a good string of the target language ("good English")?
- How can we select a fluent translation?

Fluency

Israeli officials are responsible for airport security.

- Israel is in charge of the security at this airport.
- The security work for this airport is the responsibility of the Israel government.
- Israeli side was in charge of the security of this airport.
- Israel is responsible for the airport's security.
- Israel is responsible for safety work at this airport.
- Israel presides over the security of the airport.
- Israel took charge of the airport security.
- The safety of this airport is taken charge of by Israel.
- This airport's security is the responsibility of the Israeli security officials.

(from Koehn book)

Noisy Channel Model

- We can model fluency with a *language model* P(**e**) of the target language.
 - can estimate from lots of monolingual data!
- Noisy Channel Model (also used in speech recognition):

$$P(\mathbf{e} \mid \mathbf{f}) = \frac{P(\mathbf{f} \mid \mathbf{e}) \cdot P(\mathbf{e})}{P(\mathbf{f})}$$

$$\propto P(\mathbf{f} \mid \mathbf{e}) \cdot P(\mathbf{e})$$
translation model
(for adequacy)
language model
(for fluency)

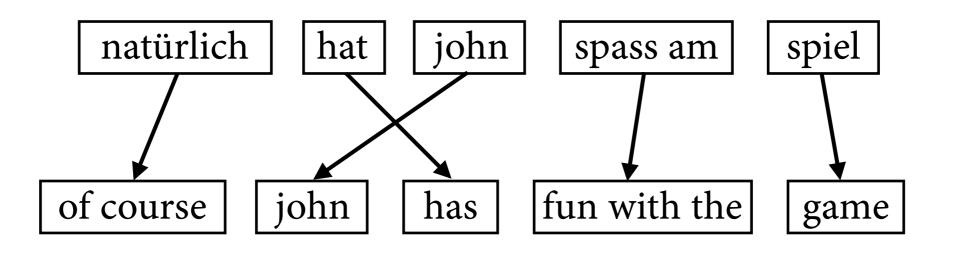
Word-based translation model

• Could derive model for word-by-word translation, e.g. from IBM Model 1:

$$P(\mathbf{f} \mid \mathbf{e}) = \sum_{a} P(\mathbf{f}, a \mid \mathbf{e})$$
$$\propto \prod_{j=1}^{l_f} \sum_{i=1}^{l_e} P(f_j \mid e_i)$$

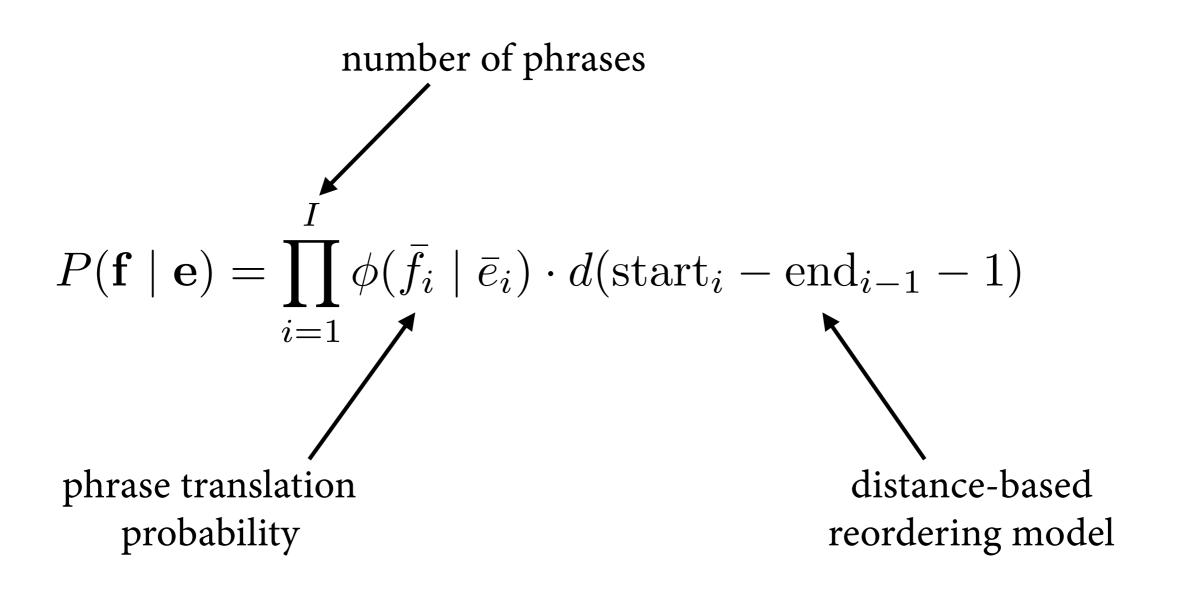
Phrase-based translation

- But want to translate entire *phrases* (i.e. substrings):
 - translation of one word can consist of multiple words
 - context of word in phrase can help disambiguate



• Note: these "phrases" need not be linguistically meaningful constituents.

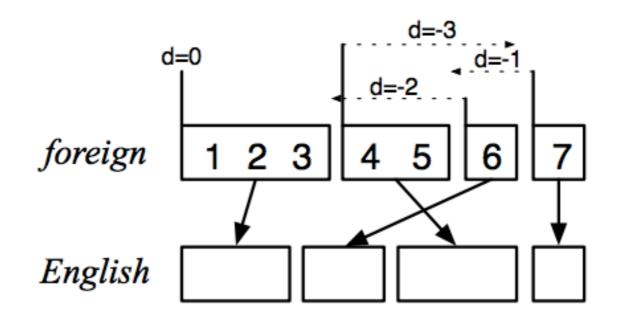
Phrase-based translation model



(the whole thing gets multiplied by P(e) later)

Reordering Model

Let's assume a simple model for reordering for now.



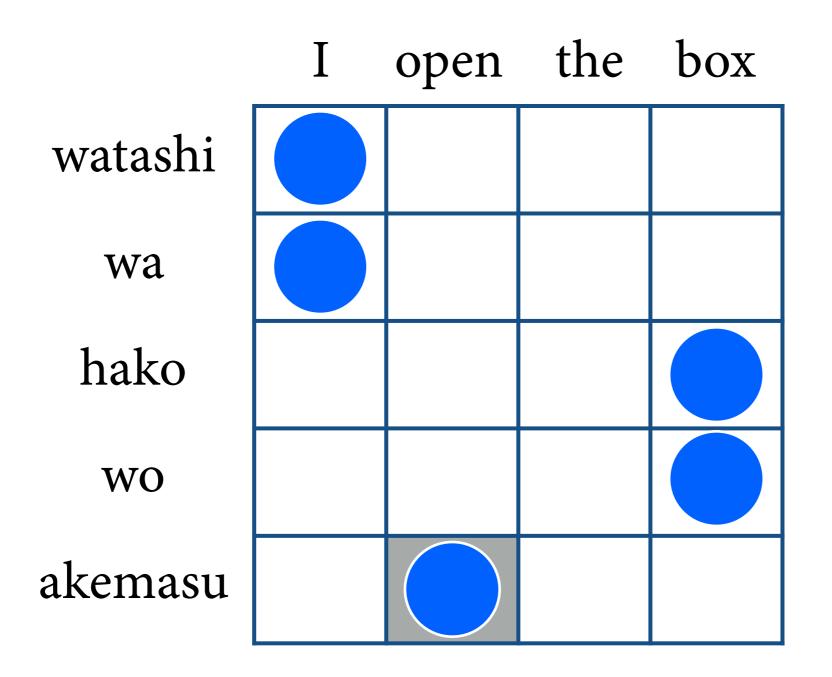
phrase	translates	movement	distance
1	1–3	start at beginning	0
2	6	skip over 4–5	+2
3	4–5	move back over 4–6	-3
4	7	skip over 6	+1

Scoring function: $d(x) = \alpha^{|x|}$ — exponential with distance

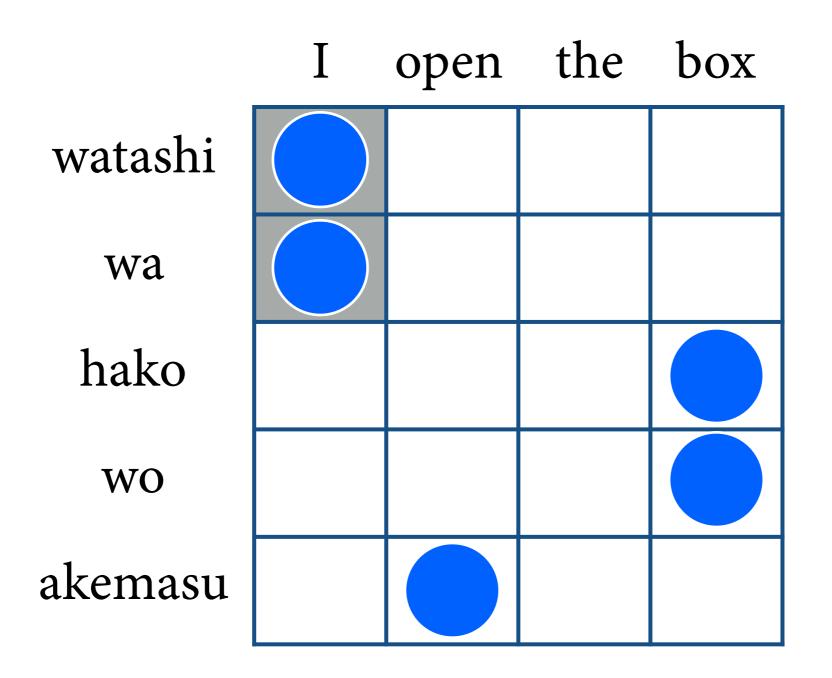
Learning phrase translations

- Extend word alignments to phrase alignments.
- Collect all phrase pairs from the parallel corpus (both big and small we want *all* phrase pairs).
- Estimate phrase translation probabilities P(f | e) using maximum likelihood estimation (plus smoothing).

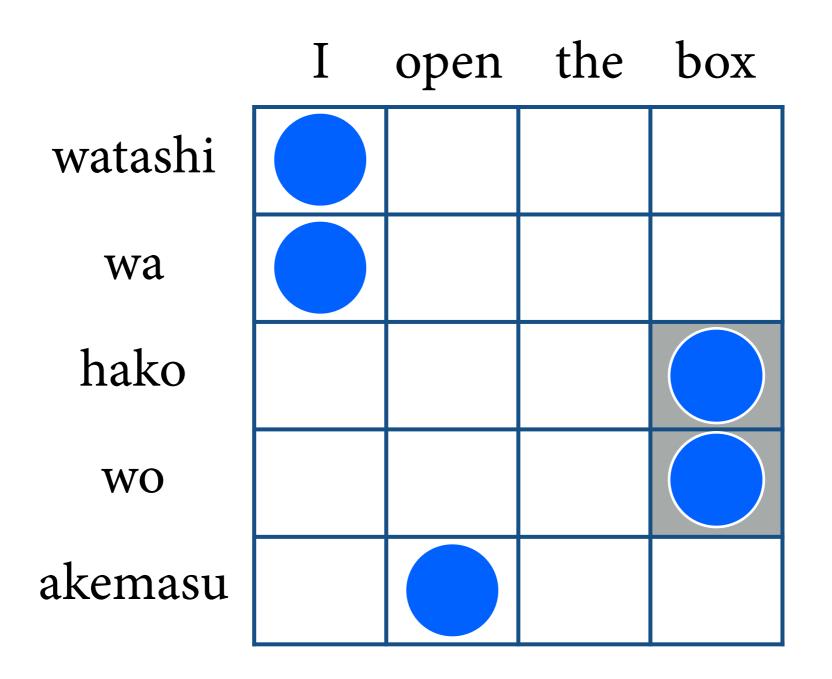




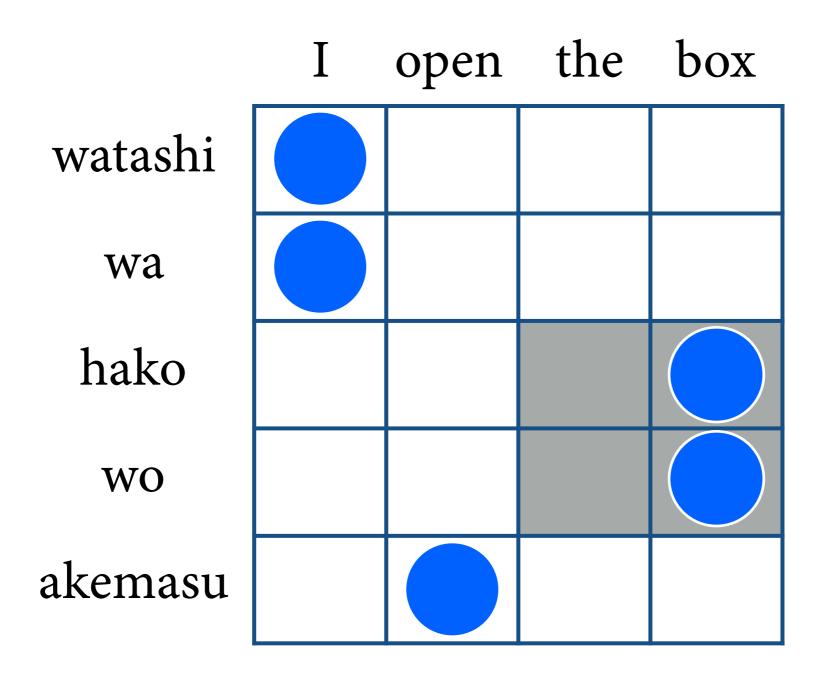
akemasu / open



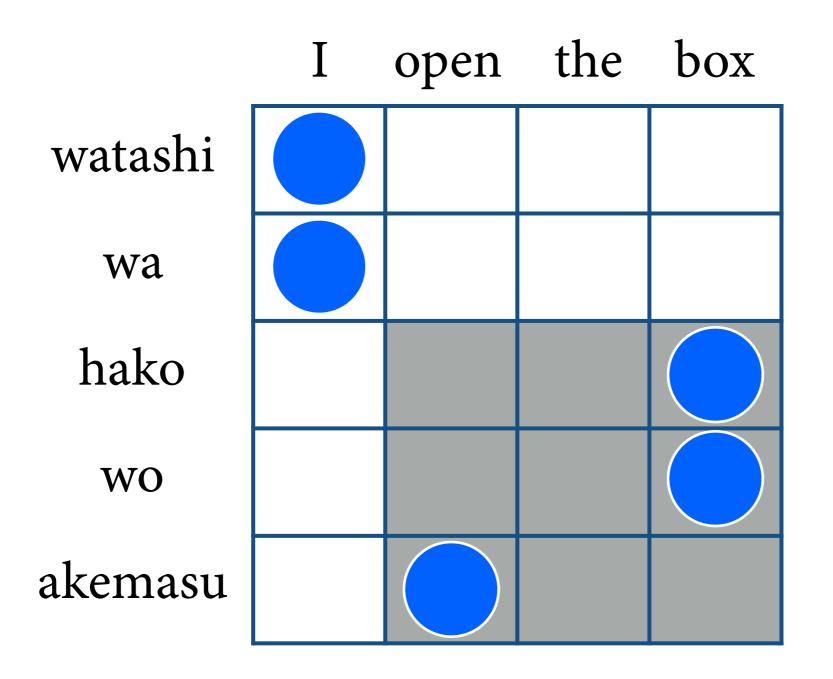
watashi wa / I



hako wo / box



hako wo / the box



hako wo akemasu / open the box

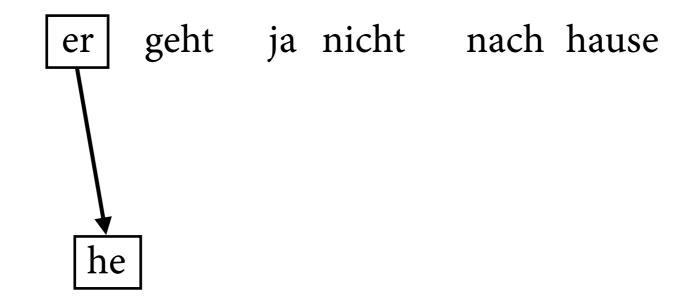
Decoding

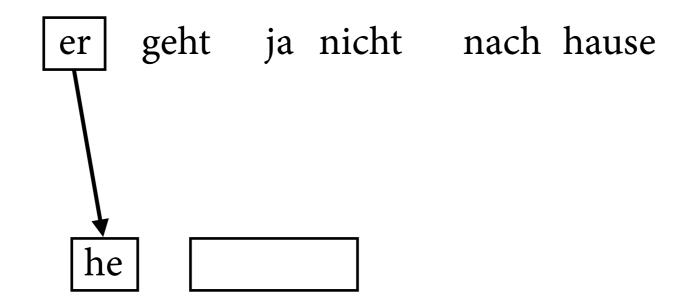
- We now have:
 - noisy channel $P(\mathbf{e} \mid \mathbf{f}) \propto P(\mathbf{f} \mid \mathbf{e}) * P(\mathbf{e})$
 - ▶ language model P(e)
 - phrase-based translation model $P(\mathbf{f} \mid \mathbf{e}) = \prod_{i=1}^{I} \phi(\bar{f}_i \mid \bar{e}_i) \cdot d(\operatorname{start}_i - \operatorname{end}_{i-1} - 1)$
- We need to solve the *decoding* problem: for a given **f**, compute $\operatorname{argmax}_{\mathbf{e}} P(\mathbf{e} \mid \mathbf{f})$.

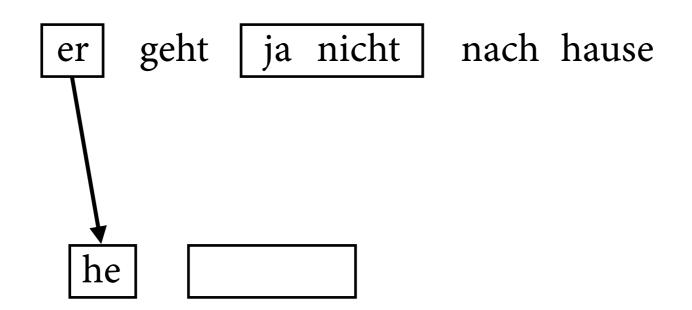
er geht ja nicht nach hause

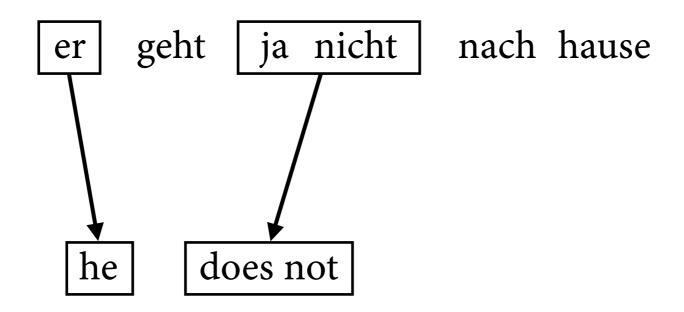
er geht ja nicht nach hause

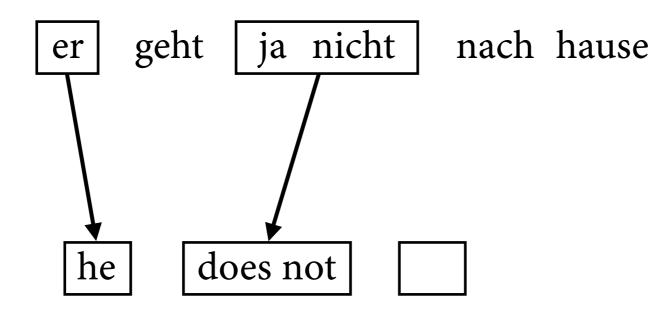
er geht ja nicht nach hause

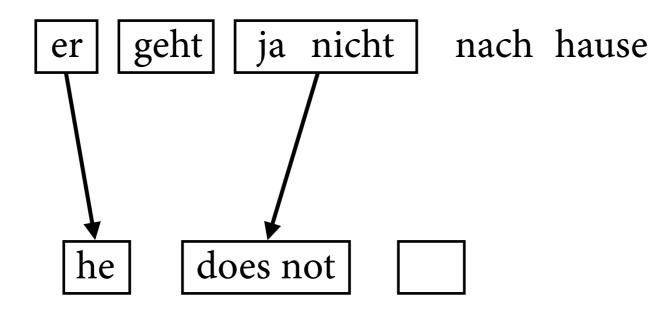


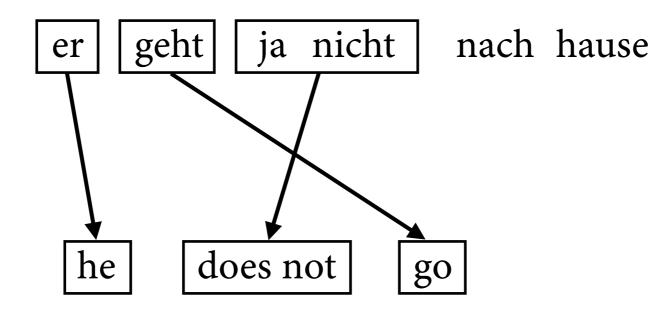


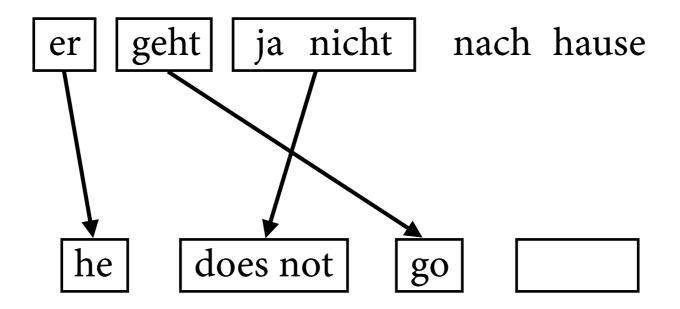


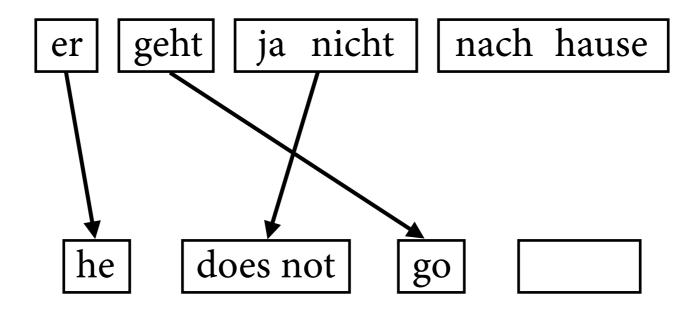


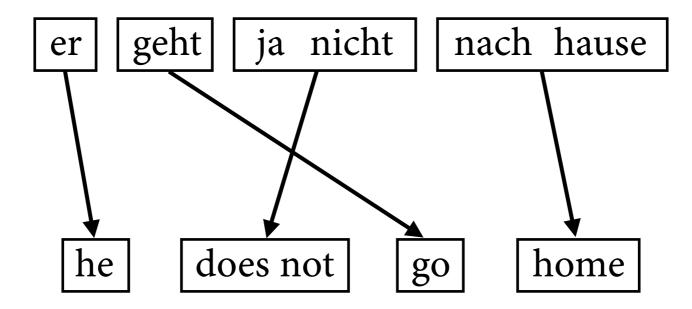




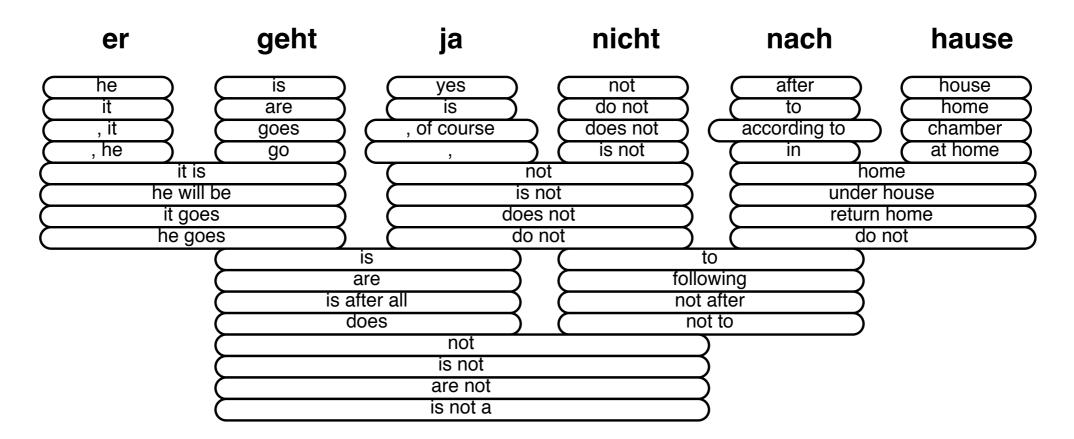






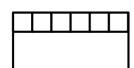


More realistically

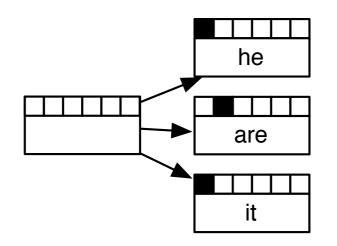


- Many translation options to choose from
 - in Europarl phrase table: 2727 matching phrase pairs for this sentence
 - by pruning to the top 20 per phrase, 202 translation options remain

start with empty hypothesis (no words translated)

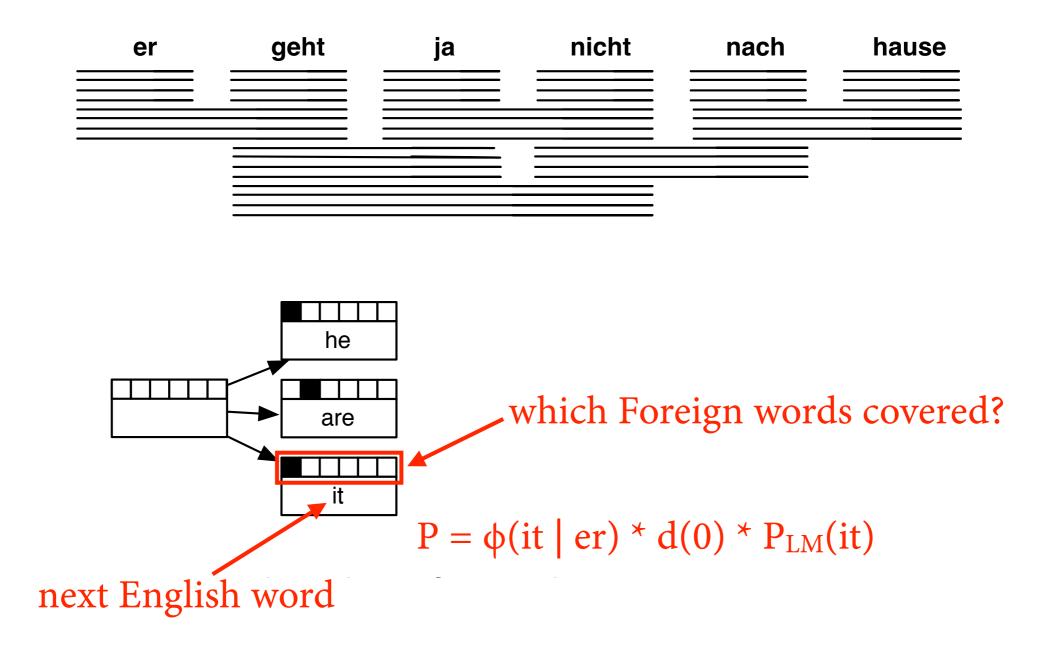


expand hypotheses by next English word

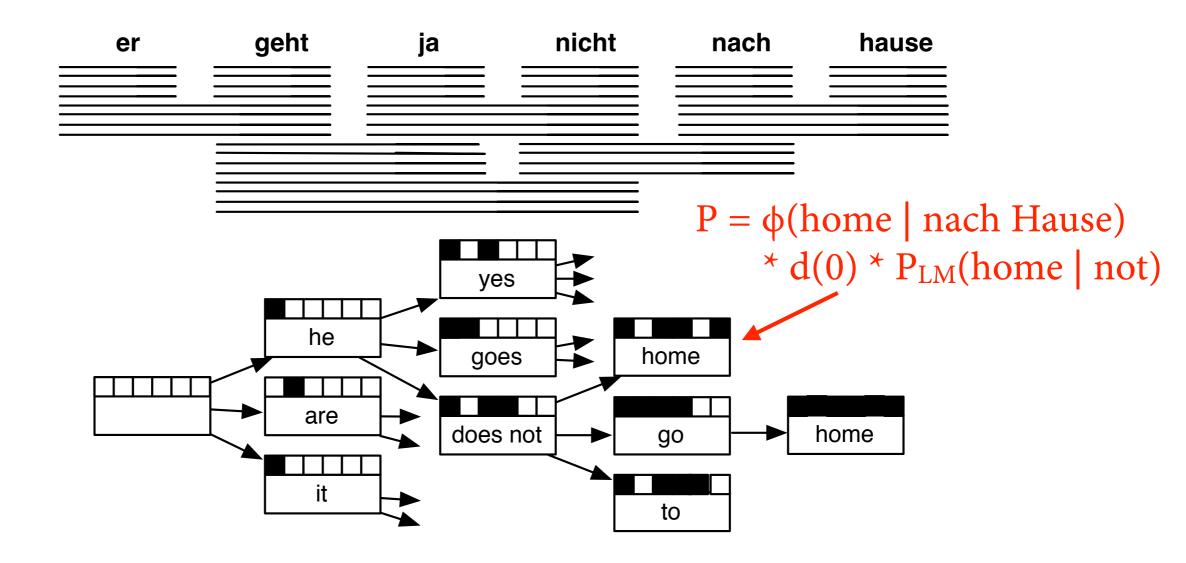


- - - -

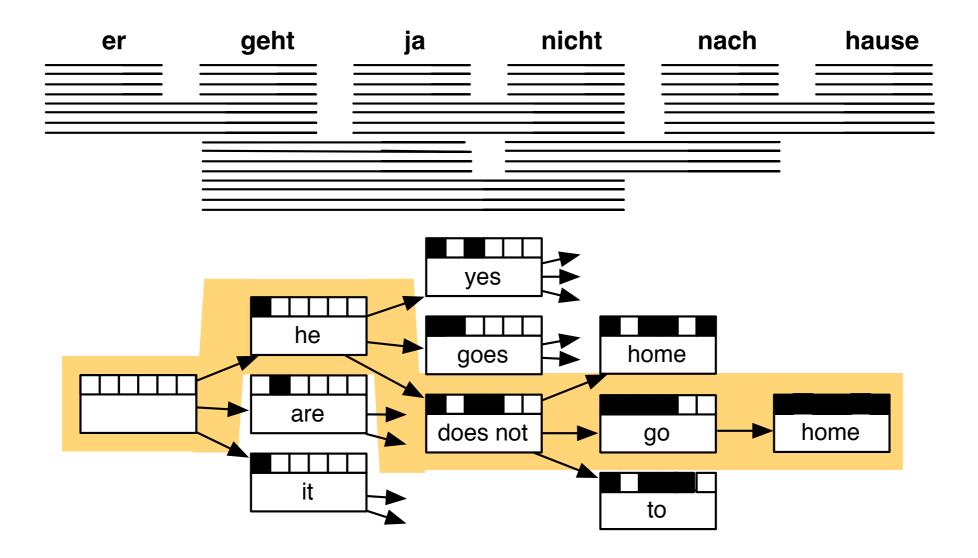
expand hypotheses by next English word



continue expanding hypotheses



backtrack from highest-scoring complete hypothesis



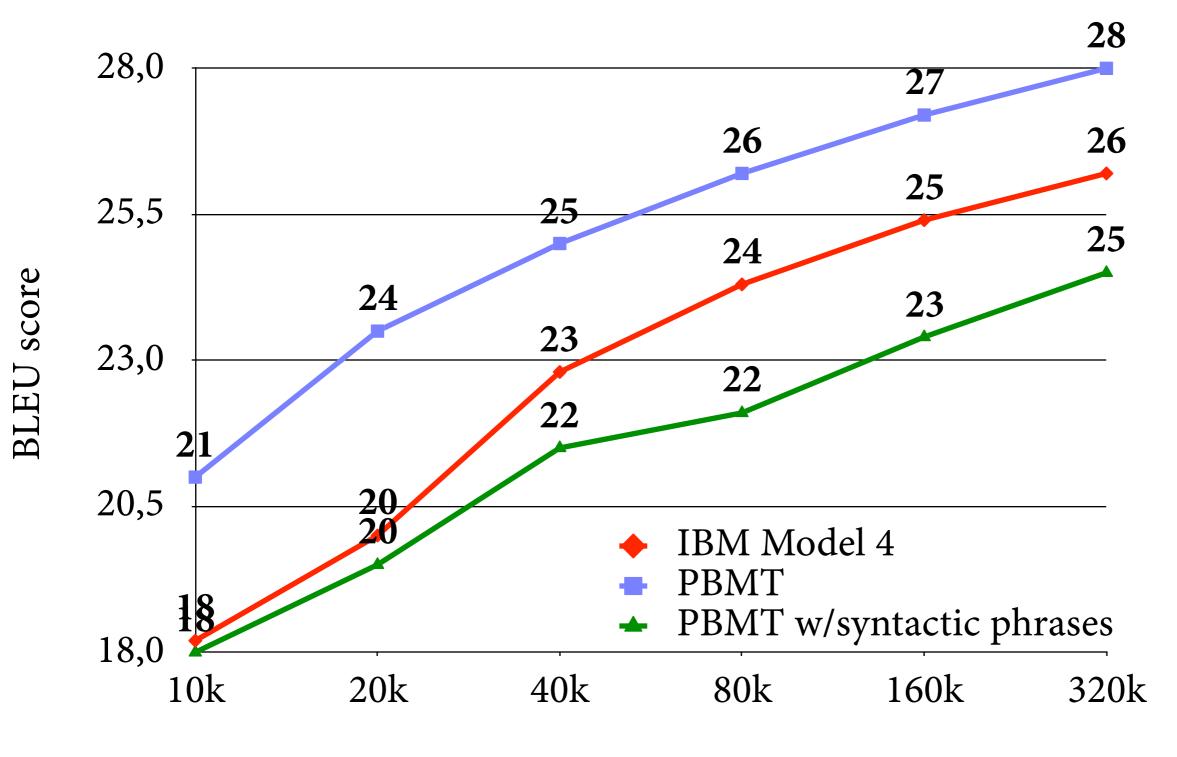
Computational issues

- Search space is huge.
 - exponential in sentence length (because of free reordering)
 - in fact, finding best translation is NP-complete
- Need heuristics to deal with complexity.
 - beam search: *stack decoding*
 - ► A* search

Putting linguistics in SMT

- Word-based, phrase-based SMT very naive from a linguistics perspective.
- Can we do better by putting linguistics into SMT? (At least a bit of syntax?)
- Received wisdom before 2005: phrase-based translation with lots of data much better; syntax hurts.

Syntax can hurt



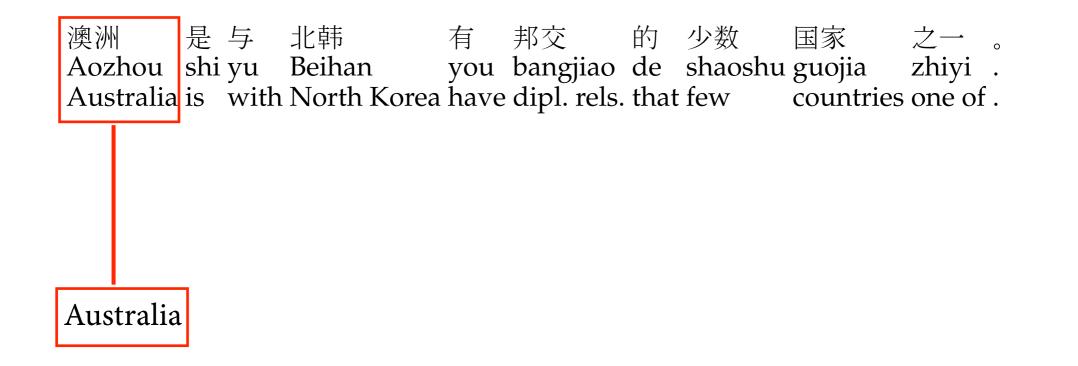
Training corpus size

Koehn et al. (2003)

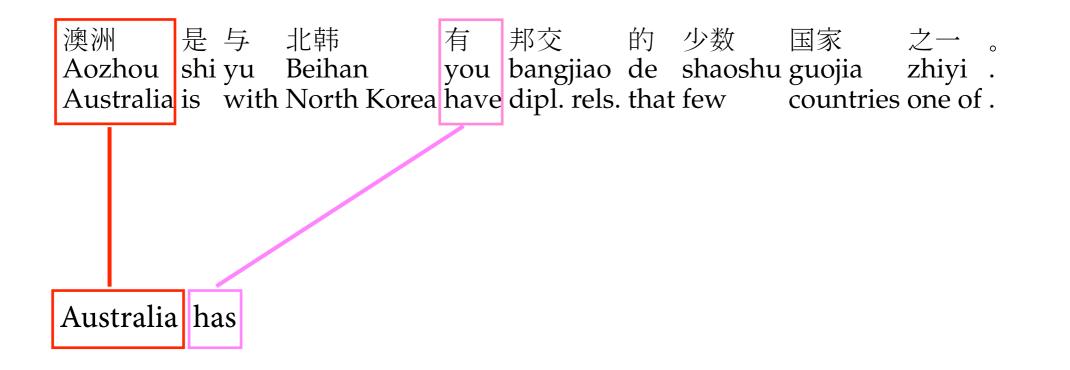
(output of phrase-based system ATS)

澳洲 是与 北韩 有 邦交 的 少数 国家 之一。
Aozhou shi yu Beihan you bangjiao de shaoshu guojia zhiyi .
Australia is with North Korea have dipl. rels. that few countries one of .

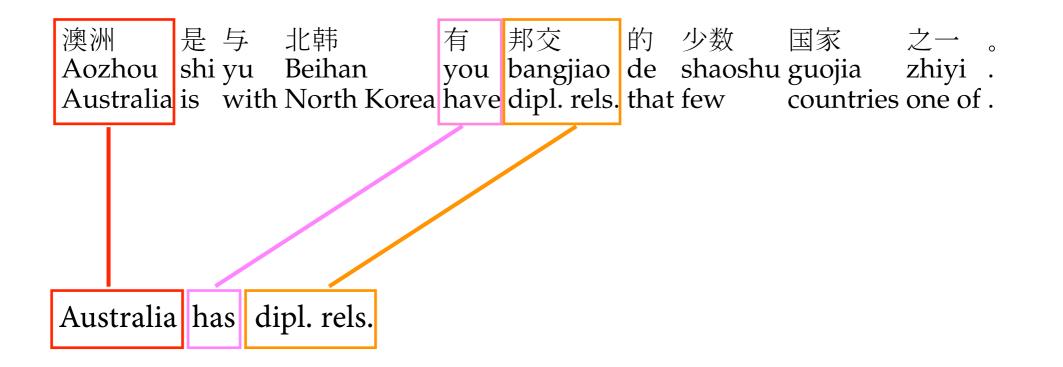
(output of phrase-based system ATS)



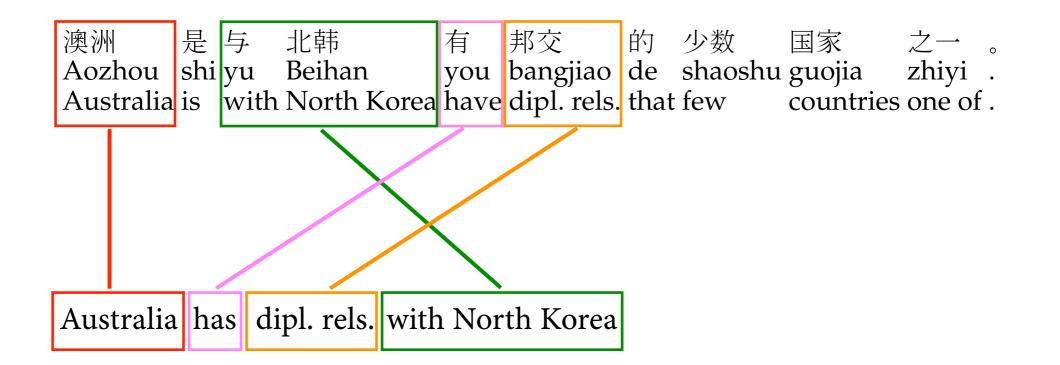
(output of phrase-based system ATS)



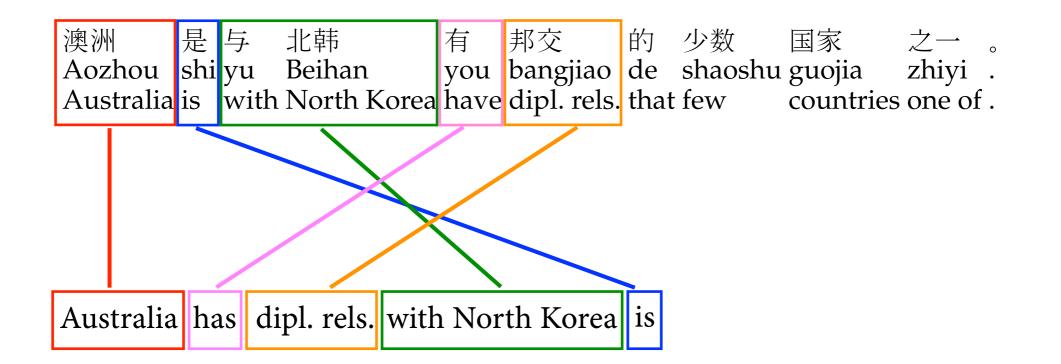
(output of phrase-based system ATS)



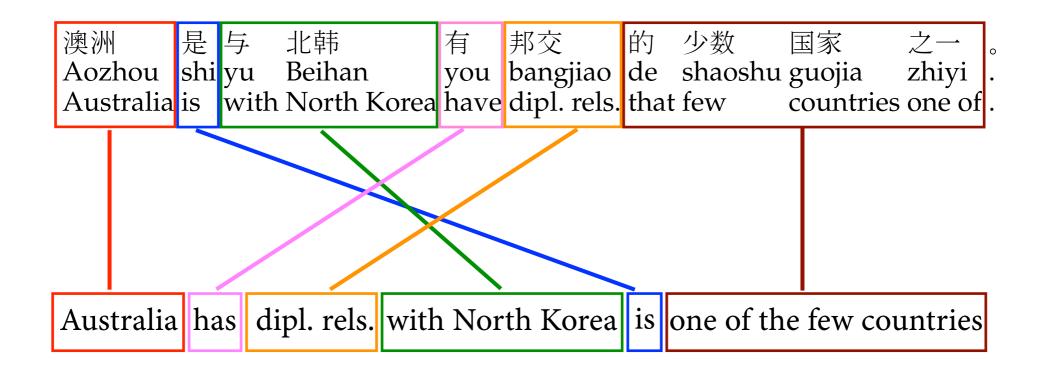
(output of phrase-based system ATS)



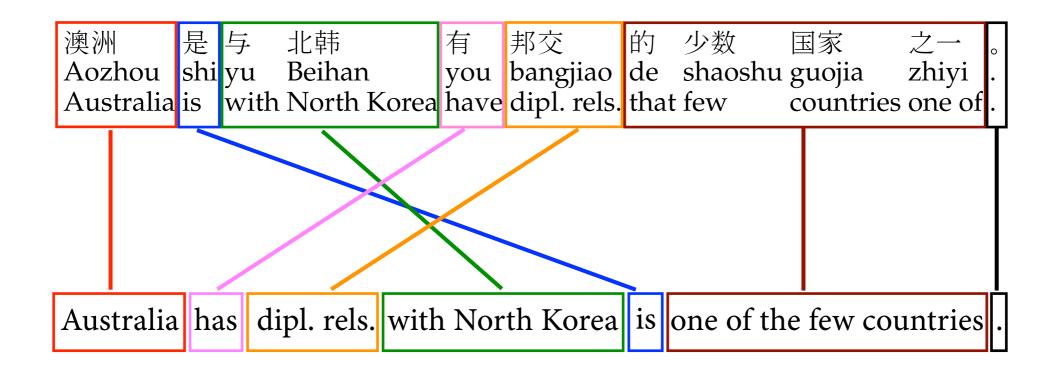
(output of phrase-based system ATS)



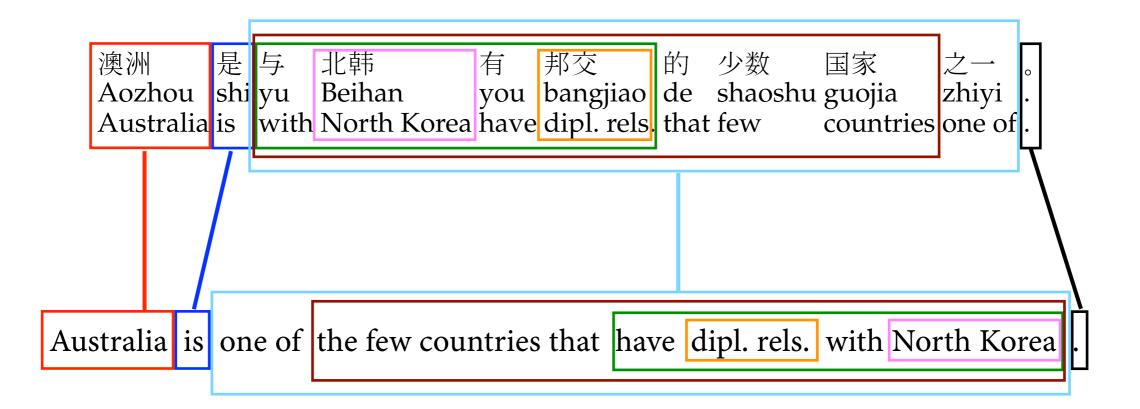
(output of phrase-based system ATS)



(output of phrase-based system ATS)



Syntax-based reordering



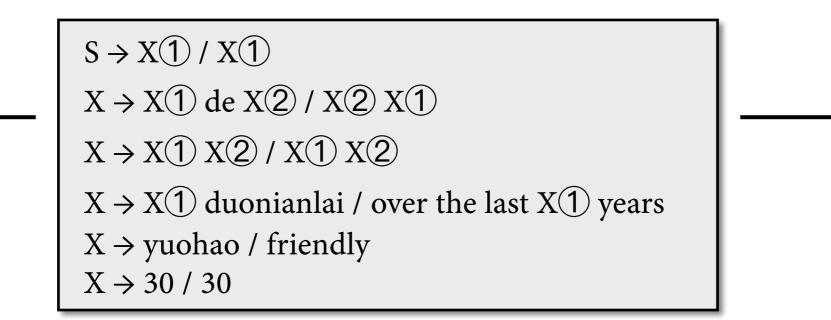
 $\langle yu \mid you \mid 2, have \mid 2 with \mid \rangle$ $\langle 1 de \mid 2, the \mid 2 that \mid \rangle$ $\langle 1 zhiyi, one of \mid \rangle$

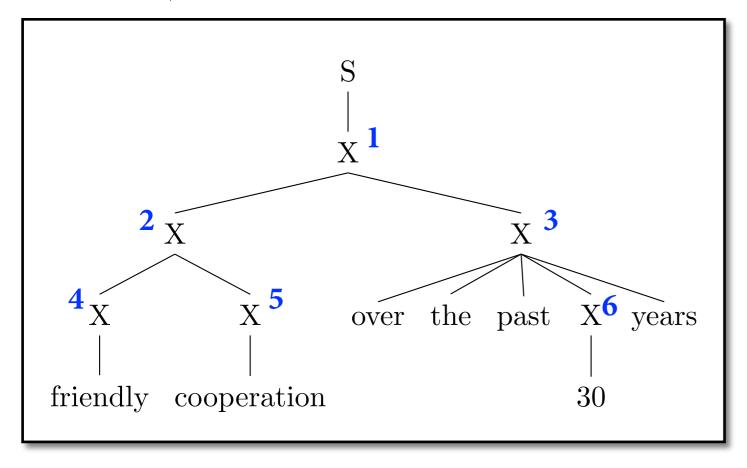
Syntax-based translation

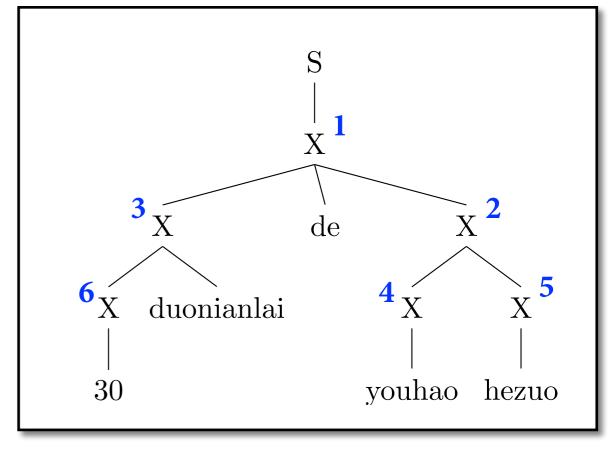
- Idea: Learn *synchronous* syntax rules that capture syntactic reordering between the two languages.
- Then much less unsystematic reordering necessary.
- We need to figure out:
 - how to represent translation rules
 - how to extract translation rules from data
 - how to define probability model (skipped here)
 - how to do decoding

(Chiang 2005, 2007)

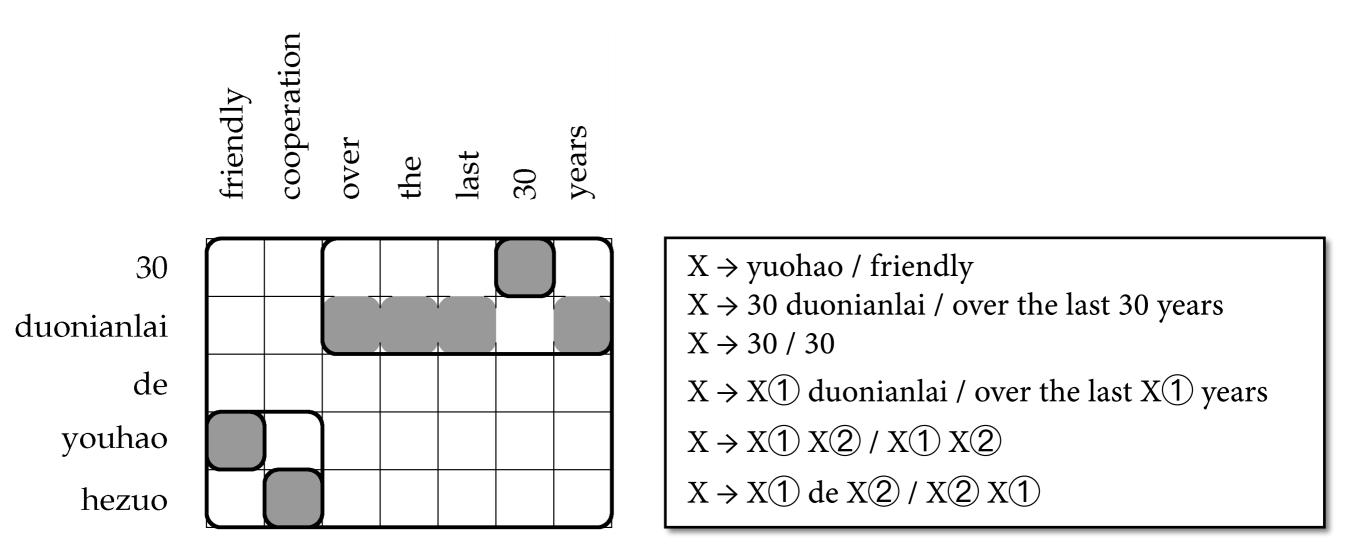
Synchronous CFG







SCFG rule extraction



- Extract all phrase pairs as usual.
- Generate more rules by replacing sub-phrases by nonterminal X.
- Add "glue rules" $S \rightarrow S(1) X(2) / S(1) X(2)$ and $S \rightarrow X(1) / X(1)$ to start derivations.

Decoding schema

f = "30 duonianlai de youhao hezuo"



Pruning

- Problem: number of items blown up by factor of |V|^{2m-2} for an m-gram language model.
- Need to use beam search: for each [X, i, k] for Foreign positions i, k, keep only the best analyses.
- *Cube pruning:* improve runtime further by filling chart cell for [A, i, k] from stream of rules A → B C and streams of items for cells [B, i, j] and [C, j, k] using n-best algorithm.

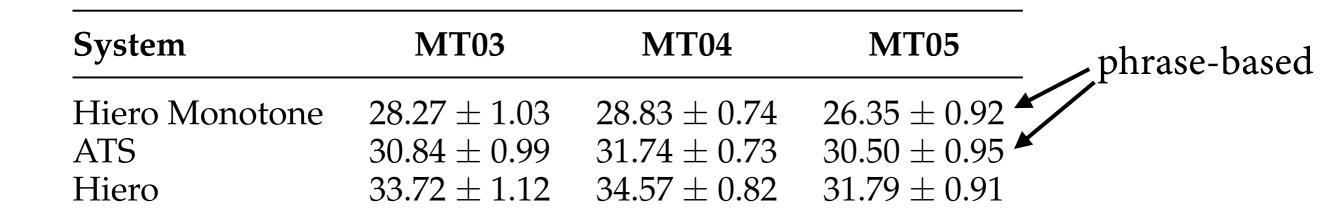
Cube Pruning



 $X \rightarrow \langle \operatorname{cong} X_{[1]}, \operatorname{from the} X_{[1]} \rangle$ $X \rightarrow \langle \text{cong } X_{1}, \text{since } X_{1} \rangle$ $X \rightarrow \langle \text{cong } X_{1}, \text{through } X_{1} \rangle$

Items for Chinese [X, 5, 8]

BLEU Comparison



Results: BLEU and Speed

Method	Settings	Time	BLEU
rescore	$k = 10^{4}$	16	33.31
rescore	$k = 10^{5}$	139	33.33
intersect*		1455	37.09
cube prune	$\varepsilon = 0$	23	36.14
cube prune	$\varepsilon = 0.1$	35	36.77
cube prune	$\varepsilon = 0.2$	111	36.91

time in seconds per sentence

Conclusion

- Noisy channel translation: combine translation model with language model.
- Phrase-based translation: Extract phrases (= arbitrary substrings) from word alignments.
 - different reordering models, e.g. with SCFGs
- Decoding algorithms must deal with huge search space. Need to do some clever form of beam search.
- Much current research uses neural networks instead.