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The story so far

• Context-free grammars have many strengths. 
‣ simple parsing algorithms with decent complexity 

‣ simple but effective probability model (PCFGs) 

‣ easily extended (e.g. to SCFGs) 

• They also have weaknesses. 
‣ Some phenomena in NL syntax not context-free; can’t be 

correctly modeled with (P)CFGs. 

‣ Grammars cannot be lexicalized; hard to predict syntactic 
structure in which a word is used. 

• Let’s look at these in more detail.



Some NLs not context-free
… because they allow cross-serial dependencies.

(Shieber 1985 on Swiss German; everybody should read this paper)

Jan säit das mer es huus haend wele aastriiche.

Jan säit das mer d’chind es huus haend wele laa aastriiche.

Jan säit das mer em Hans es huus haend wele hälfe aastriiche.

Jan säit das mer d’chind em Hans es huus haend wele laa hälfe aastriiche.

Jan säit das mer em Hans d’chind es huus haend wele laa hälfe aastriiche.*

Jan säit das mer em Hans em Sepp es huus haend wele laa hälfe aastriiche.

Jan säit das mer em Hans es huus haend wele laa hälfe aastriiche.

*

*

⇒ w am bn x cm dn y ⇒ not context-free



Lexicalization

• We call a grammar lexicalized  if every piece of 
grammatical information is tied to a word. 
‣ For every word, there is a finite set of lexicon entries which 

say how it can combine with others. 

• Advantages: 
‣ convenient in manual grammar development 

‣ can make parsing really, really fast (supertagging) 

• Most information in a CFG is in the production 
rules, i.e. not lexicalized.



Lexicalization of CFGs

• Greibach normal form: 
‣ lexicalized (exactly one terminal symbol per rule) 

‣ can bring every CFG into weakly equivalent GNF 

‣ but not strongly equivalent (parse trees change)  

• Can we strongly lexicalize CFGs?
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Tree substitution grammars

• Tree substitution grammars (TSGs): 
finite set of elementary trees for the words. 

• Nodes of elementary trees: 
‣ internal nodes, labeled with nonterminal symbols 

‣ lexical anchors, leaves labeled with words or POS tags  
(sometimes marked with diamond:  A◊) 

‣ substitution nodes, leaves marked with nonterminals 
(usually marked with downarrow:  A↓)



Lexicalized elementary trees

NP↓ VP

S

loves◊
V◊ NP↓

NP↓ VP

S

V NP↓

hates◊

NP↓ VP

S

V NP↓

unlexicalized lexicalized

α1 α1(loves) α1(hates)

John◊

NP

Mary◊

NP
NP◊

α2 α2(John) α2(Mary)



TSGs: Derivations

• Derivation step, t ⇒ t’: 

‣ t a tree that contains a substitution node u with label A 

‣ e an elementary tree with root label A 

‣ obtain t’ from t by replacing u with e 

• Derived tree t of grammar G: S↓ ⇒* t 
and contains no more substitution nodes. 

• TSG describes: 
‣ language of derived trees 

‣ language of strings (= yields of derived trees)
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Example derivation
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Lexicalized TSG

• Call elementary tree lexicalized if it contains a 
lexical anchor. 

• Call TSG lexicalized if all elementary trees  
are lexicalized. 

• Can we strongly lexicalize all CFGs into TSGs? 
‣ that is: is it true that for every CFG, there is a lexicalized 

TSG such that derived trees of TSG = parse trees of CFG?



No!

• Counterexample (Schabes): 

• Path to highest leaf can be arbitrarily long;  
but is bounded in any given lexicalized TSG.
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Adjunction

• To lexicalize example CFG, we can use a second tree-
combining operation: adjunction.
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Adjunction

• To lexicalize example CFG, we can use a second tree-
combining operation: adjunction.
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Lexicalization with adjunction

• Using these lexicalized elementary trees: 

• … we can build all parse trees of the example CFG:
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Tree-adjoining grammars

• A (lexicalized) TAG grammar consists of a finite  
set of lexicalized elementary trees. 
‣ initial trees: have no foot node 

‣ auxiliary trees: have foot nodes 

• Combine these using substitution and adjunction. 

• Can prove that for every CFG, there is a strongly 
equivalent, lexicalized TAG gramar. 

• In addition to all context-free grammars, can also 
describe languages that are not context-free.

Joshi



Swiss German in TAG
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Parsing

• Can define a CKY-style parser for TAG. Items: 
‣ [A, i, k, …] for substring from i to k 

(yield of initial trees) 

‣ <A, i, j, k, l, …> for pair of substrings from i-j and k-l 
(yield of auxiliary trees) 

• Most expensive rule wraps one pair around another: 

• Thus, parsing complexity O(n6).

hA, i1, i2, i5, i6,�1, ✏i hA, i2, i3, i4, i5,�2,⇡i
hA, i1, i3, i4, i6,�2,⇡i

wrap22



Categorial Grammars

• CFG and TAG based on phrase structure grammar: 
‣ combine small constituents into larger constituents 

‣ no inherent relationship between nonterminals (V, NP);  
grammar must say that they can be combined 

• One alternative: categorial grammar. 
‣ NL expressions have categories, e.g. S\NP 

‣ category says what type of substrings it would like to be 
combined with (NP) and what type of substring this will 
produce (S) ⇒ functor-argument structure made explicit 

‣ … and on what side we’re looking for the NP 
(slash “/“ = to the right; backslash “\” = to the left)



Example

sandwich
NP

NP
NNP/N(S\NP)/NP

John eats a

S\NP
S



CCG

• Combinatory Categorial Grammar (CCG): 
one grammar formalism for CG which is 
very popular in computational linguistics. 

• Grammar specifies: 
‣ finite set of categories for each word in the lexicon 

‣ rules for combining categories 
(application, composition, type-raising)

Steedman



Application

X/Y Y
X

>

forward application backward application

X\YY
X

<

• Application rules combine a functor category with 
the next argument that it is looking for.



Example
Lexicon:

John: NP
eats: (S\NP)/NP

a: NP/N
sandwich: N

big: N/N

sandwich
NP

NP

NNP/N(S\NP)/NP
John eats a

S\NP
S

big
N/N

N
>
>
>
<



Composition

• Using the composition rules, can combine two 
categories and pass “leftover” arguments to the category 
of the bigger string.

X/Y
X/Z

>B

Harmonic composition:

Crossed composition:

Y/Z Y\Z
X\Z

<B
X\Y

X/Y
X\Z

>Bx
Y\Z Y/Z

X/Z
<Bx

X\Y



Swiss German

• Crossed composition allows us to model  
cross-serial dependencies.

das mer em Hans es huus hälfed aastriiche
VP\NPaccS+SUB\NPnom\NPdat/VPNPaccNPdatNPnom

S+SUB\NPnom\NPdat\NPacc

S+SUB\NPnom\NPdat

S+SUB\NPnom

S+SUB

>Bx
<

<
<

(“VP” = abbreviation for S\NPnom)



Some formal results

• Can show that certain versions of TAG and CCG are 
weakly equivalent: generate same language class. 
‣ proof by Vijay-Shanker and Weir, early 1990s 

‣ requires CCG grammars that are not entirely lexicalized 
(Kuhlmann, Koller, Satta 2015) 

• Therefore, word problem of CCG is O(n6). 

• Polynomial CCG parser is annoying to implement; 
most implementations (e.g. OpenCCG, C&C) are 
worst-case exponential.



Supertagging

• Practical parsing time is determined by degree of 
lexical ambiguity: how many lexicon entries per word? 
‣ This is worse for TAG than for CCG because CCG’s 

combination operations more flexible than TAG’s. 

‣ Not unusual to have hundreds of lexicon entries per word 
in large-scale TAG grammar. 

• Supertagging: use statistical methods to narrow down 
lexicon entries before parsing starts. 
‣ Use methods for other tagging tasks (e.g. POS tagging):  

e.g. HMMs, CRFs, neural networks.



State of the art

• CCG parser of Lewis et al. (2016): 
‣ very accurate supertagger based on neural nets (LSTMs) 

‣ drastically simplified probability model (supertag-factored) 

‣ very fast parsing through A* search and parallelization

Model QUESTIONS BIOINFER
P R F1 P R F1

C&C - - 86.6 77.8 71.4 74.5
EASYCCG 78.1 78.2 78.1 76.8 77.6 77.2
C&C + RNN - - - 80.1 75.5 77.7
LSTM 87.6 87.4 87.5 80.1 80.9 80.5
LSTM + Dependencies 88.2 87.9 88.0 77.8 80.1 79.4
LSTM + Tri-training - - - 81.8 82.6 82.2

Table 3: Out-of-domain experiments.

and the Dependency model outperforms the LSTM
alone, showing that dependency features are cap-
turing some generalizations that the LSTM does
not. However, semi-supervised learning substan-
tially improves the LSTM, matching the accuracy of
the ensemble—showing that the LSTM is expressive
enough to compensate given sufficient data.

7.4 Out-of-domain Experiments
We also evaluate on two out-of-domain datasets
used by Rimell and Clark (2008), but did no devel-
opment on this data. In both cases, we use Rimell
and Clark’s scripts for converting CCG parses to the
target dependency representations. The datasets are:

QUESTIONS 500 questions from
TREC (Rimell and Clark, 2008). Questions
frequently contain very long range dependencies,
providing an interesting test of the LSTM supertag-
ger’s ability to capture unbounded dependencies.
We follow Rimell and Clark by re-training the
supertagger on the concatenation of the CCGbank
training data and 10 copies of the QUESTIONS
training data.

BIOINFER 500 sentences from biomedical ab-
stracts. This dataset tests the parser’s robustness to a
large amount of unseen vocabulary.

Results are shown in Table 3. Our LSTM
parser outperforms existing work on question pars-
ing, showing that it can successfully model the long-
range dependencies found in questions. Adding de-
pendency features yields only a small improvement.

On the BIOINFER corpus, our tri-trained LSTM
parser is 4.5 F1 better than the previous state-of-
the-art. Dependency features appear to be much

(2011b)’s joint parsing and supertagging model, due to differ-
ences in the experimental setup. These models are 0.3 and 1.5
F1 more accurate than the C&C baseline respectively, which is
well within the margin of improvement obtained by our model.

Parser Sentences
per second

SpaCy*4 778
Berkeley GPU* (Hall et al., 2014) 687
Chen and Manning (2014)* 391
C&C 66
EASYCCG 606
LSTM 214
LSTM + Dependencies 58
LSTM GPU 2670

Table 4: Sentences parsed per second on our hard-
ware. Parsers marked * use non-CCG formalisms
but are the fastest available CPU and GPU parsers.

less robust to unseen words than the LSTM tagging
model, and are unhelpful. Because the parser was
not trained or developed on this domain, it is likely
to perform similarly well on other domains.

7.5 Efficiency Experiments

In contrast to standard parsing algorithms, the effi-
ciency of our model depends directly on the accu-
racy of the supertagger in guiding the search. We
therefore measure the efficiency empirically.

Results are shown in Table 4.5 Our parser runs
more slowly than EASYCCG on CPU, due to the
more complex tagging model (but is 4.8 F1 more
accurate). Adding dependencies substantially re-
duces efficiency, due to calculating sparse features.
Without dependencies, the run time is dominated
by the LSTM supertagger. Running the supertag-
ger on a GPU reduces parsing times dramatically—
outperforming SpaCy, the fastest publicly available
parser (Choi et al., 2015). Roughly half the pars-
ing time is spent on GPU supertagging, and half on
CPU parsing. To better exploit batching in the GPU,
our implementation dynamically buckets sentences
by length (bins of width 10), and tags batches when
the bucket size reaches 3072 (the number of threads
on our GPU). We are not aware of any GPU im-
plementations of shift-reduce parsers or lexicalized
chart parsers, so it is unclear if most other state-of-
the-art parsers can be adapted to exploit GPUs.

4
honnibal.github.io/spaCy

5All timing experiments use a single 3.5GHz core and (where
applicable) a single NVIDIA TITAN X GPU.
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Conclusion

• Rich literature on grammar formalism that are 
more expressive than CFGs. 
‣ expressive capacity needed for some linguistic phenomena 

‣ more convenient for manual grammar development 

‣ lexicalization 

‣ see Syntactic Theory lecture if you want more details 

• Parsing for these formalisms: 
‣ higher asymptotic complexity than for CFGs 

‣ if done right, supertagging for lexicalized grammars 
can yield extremely fast parsers


