Dependency Parsing

Computational Linguistics
Alexander Koller

19 December 2017

Discontinuous constituents

e So far, we have talked about phrase-structure parsing.

» substrings form constituents of various syntactic categories

» every constituent must be a contiguous substring

e This assumption mostly correct for English.
For other languages, it doesn't work so well.

Example

S

/

Det %
/\ / \

Det Det

Das Haus bedarf vor meinem Einzug griindlicher Renovierungen.

the house requires before my moving-in thorough renovations

Dependency trees

e Basicidea:
» no constituents, just relations between words
» nodes of tree = words; edges = relations

» grammar specifies valency of each word

e Brief history:

» Tesniere 1953, posthumously
» Prague School during Cold War

» very important in CL since 2005 or so (Nivre, McDonald)

A dependency tree

subj

¥

obj
det

Hans isst ein Kasebrot.

Hans eats a sandwich

A dependency tree

Das Haus bedarf vor meinem Eiﬂzug griindlicher Renoviérungen.
the house requires before my moving-in thorough renovations

A dependency tree

M de

Dem Mann wird ein Késebrot gegeben.
The man is a sandwich given

Projectivity

e Dependency tree may have crossing edges, which
cross the projection line of another word.

Mann wird geg;reben

e A dependency tree is called projective ift it has no
crossing edges.

Nivre-style dependency parsmg _

e Idea by Joakim Nivre (2003):

» read sentence word by word, left to right

» after each word, select a parser operation from large set by
consulting a machine-learned classifier

» original algorithm constructs only projective trees;
can be extended to non-projective parsing too

Hans isst ein Kisebrot.

Nivre-style dependency parsmg _

e Idea by Joakim Nivre (2003):

» read sentence word by word, left to right

» after each word, select a parser operation from large set by
consulting a machine-learned classifier

» original algorithm constructs only projective trees;
can be extended to non-projective parsing too

Y

Hans isst ein Kasebrot.

Nivre-style dependency parsmg _

e Idea by Joakim Nivre (2003):

» read sentence word by word, left to right

» after each word, select a parser operation from large set by
consulting a machine-learned classifier

» original algorithm constructs only projective trees;
can be extended to non-projective parsing too

?
Y

Hans isst ein Kasebrot.

Nivre-style dependency parsmg _

e Idea by Joakim Nivre (2003):

» read sentence word by word, left to right

» after each word, select a parser operation from large set by
consulting a machine-learned classifier

» original algorithm constructs only projective trees;
can be extended to non-projective parsing too

¥

Hans isst ein Kasebrot.

Nivre-style dependency parsmg _

e Idea by Joakim Nivre (2003):

» read sentence word by word, left to right

» after each word, select a parser operation from large set by
consulting a machine-learned classifier

» original algorithm constructs only projective trees;
can be extended to non-projective parsing too

¥

Y

Hans isst ein Kasebrot.

Nivre-style dependency parsmg _

e Idea by Joakim Nivre (2003):

» read sentence word by word, left to right

» after each word, select a parser operation from large set by
consulting a machine-learned classifier

» original algorithm constructs only projective trees;
can be extended to non-projective parsing too

T .
SR

Hans isst ein Kasebrot.

Nivre-style dependency parsmg _

e Idea by Joakim Nivre (2003):

» read sentence word by word, left to right

» after each word, select a parser operation from large set by
consulting a machine-learned classifier

» original algorithm constructs only projective trees;
can be extended to non-projective parsing too

¥

det

Hans isst ein Kasebrot.

Nivre-style dependency parsmg _

e Idea by Joakim Nivre (2003):

» read sentence word by word, left to right

» after each word, select a parser operation from large set by
consulting a machine-learned classifier

» original algorithm constructs only projective trees;
can be extended to non-projective parsing too

subj

Q
: det

Hans isst ein Kasebrot.

Left-Arc operation

o Left-Arc(r): Topmost token i on stack becomes left
r-child of next input token j.

(6-i, j-t, h,d) h(i)=0

(0, j't, hlimjl,dli~r1])

o idisappears from stack, because i can't get further
children in a projective tree

Right-Arc operation

e Right-Arc(r): Input token j becomes (right) r-child
of topmost stack token i.

(6-i, j-t, h,d) h(j)=0

(0-ij, T, hij~i],d[j~r])

e i, jboth remain on stack because they can receive
further children (on the right).

Reduce operation

e Reduce: Remove topmost token from stack.

(0-i, T, h,d) h(i) =0

(0, 1, h,d)

e This decides that we have seen all children of i, and
makes words further to the left available for
receiving further right children.

e Rule requires that i already has a parent.

Shift operation

e Shift: Moves next input token j to stack.

(0, j-t, h,d)

(o), T, h, d)

e Decides that j and any word i on stack are in
disjoint tree positions.

Example run

O
O
(g,] eats a sw) Q § §
i . O 5
. Io:hn eats e!1 sandwich
John eats a sandwich

John eats a sandwich

Example run

Q
O
(g,] eats a sw) Q § §
O a
. Io:hn eats e!1 sandwich
| Shift
O
o Q
(], eats a sw) 0
Io:hn . ea:tts ':1 sanciwich

John eats a sandwich

Example run

(g,] eats a sw)

11 Shift

(], eats a sw)

U Left- Arc(subj)

(g, eats a sw)

Q
o Q
@
. Ioihn eats a sandwich
Q
o Q
Io:hn . ea:tts a sanciwich
sub Q
Q E
Io:hn . ea:tts a sanciwich

Example run

Q/“’”D 0
(g, eats a sw) i

Q
Iohn o eaits e!1 san(iwich
John eats a sandwich

John eats a sandwich

Example run

(g, eats a sw)

| shift

(eats, a sw)

SU0]
a Q
: i O '
Iohn o eaits al san(iwich
SU0]
Q/WQ Q
: i O '
]o:hn eétts e Qa sanélwich
John eats a sandwich

Example run

SYO]
(| a Q
€, eats a sw ! ; ;
§ O a
u Shift Johne eats a sandwich
SYO0]
Q/WQ Q
ecats, a Sw ; E E
() R B
]o:hn eaitts . ;1 sanc!lwich
| Shift
SYO]
Q/WQ Q
(eats a, sw) O g
Ioihn eats ;1 e sandwich

Example run

AR
(eats a, sw) i

?

John eats a * sandwich

John eats a e sandwich

John eats a sandwich

Example run

Q/”/O 0
(eats a, sw) i

?

John eats a * sandwich

“, Left-Arc(det)

subj

(eats, sw) 5 det :

John eats a e sandwich

John eats a sandwich

Example run

o/”/o 0
(eats a, sw) i

?

John eats a * sandwich

“, Left-Arc(det)

subj

(eats, sw) 5 det :

John eats a e sandwich

,U, Right-Arc(obj)

obj

subj

(eats sw;, €)

Q det

John eats a sandwiche

Parsing as Classification

Can now do deterministic parsing as follows:

Cc = start-item
while (c not goal-item and can apply
at least one parsing operation to c):
op = next-operation(c)
c = perform-operation(c, op)

“next-operation” chooses parsing operation to be
applied to c. How do we get it?

Learning classifier

it e NN~
U Shift

U Left-Arc

{
it AN~

Corpus of
derivations

(fti(ity), ..., ftm(it1), Shift)

(ft:1(it2), ..., ftm(it2), Left-Arc)

(ft1(itn+1), ..o, ftm(itn+1), Shift)

v

Feature vectors

Train classifier

Features in MaltParser

e MaltParser (= standard implementation of Nivre
algorithm) offers “toolbox” for features:

» oi: i-th stack token (from the top)

» Ti: i-th token in remaining input

» h(x): parent of x in the tree

» 1(x), r(x): leftmost (rightmost) child of x in the tree
» p(x): POS tag of x

» d(x): edge label from h(x) into x

» build arbitrary terms from these, e.g. p(1(0o))

The MST Parser

e Alternative idea (McDonald & Pereira, ca 2005):

» take graph w

here nodes are words of sentence,

and a directed edge between each two nodes

» weight of edge represents how plausible a statistical model

finds this edge

» then calculate maximum spanning tree, i.e. tree that
contains all nodes and has maximum sum of edge weights.

root \ root _
ﬂ
9 20 30 10 -
> _ saw __

John Mary - 30 30 -

Kg

John Mary

Computing MSTs

Using the Chu-Liu-Edmonds algorithm, runtime O(n?)

9

1
20

pick best contract
incoming edges cycles

v

0
30
0
30
=
3
e

pick best

incoming edges

weight of new edge =
weight of old edge (u,v)
- weight of best edge into v

Features

Basic Uni-gram Features

Basic Big-ram Features

p-word, p-pos

p-word, p-pos, c-word, c-pos

p-word

p-pos, c-word, c-pos

P-pPoOSs

p-word, c-word, c-pos

c-word, c-pos

p-word, p-pos, c-pos

c-word

p-word, p-pos, c-word

C-pos

p-word, c-word

pP-pos, c-pos

In Between POS Features

p-pos, b-pos, c-pos

Surrounding Word POS Features

p-pos, p-pos+1, c-pos-1, c-pos

p-pos-1, p-pos, c-pos-1, c-pos

p-pos, p-pos+1, c-pos, c-pos+1

p-pos-1, p-pos, c-pos, c-pos+1

p = parent; ¢ = child; b = word between parent and child in string

e Learn weight for each feature from training data.

» using MIRA algorithm, which tries to maximize difference
between score of correct parse and score of best wrong parse

o Typically many features (millions).

Evaluation

Which proportion of edges predicted correctly?

» label accuracy:
#(nodes with correct label of incoming edge) / #nodes

» unlabeled attachment score:
#(nodes with correct parent) / #nodes

» labeled attachment score (LAS):
#(nodes with correct parent and edge label) / #nodes

Nivre vs McDonald

McDonald | Nivre

Arabic 66.91 66.71
Bulgarian 87.57 87.41
Chinese 85.90 86.92
Czech 80.18 78.42
Danish 384.79 84.77
Dutch 79.19 78.59
German 87.34 85.82
Japanese 90.71 91.65
Portuguese 86.82 87.60
Slovene 73.44 70.30
Spanish 82.25 81.29
Swedish 82.55 84.58
Turkish 63.19 65.68
Overall 80.83 80.75

LAS in CoNLL-X Shared Task on Multilingual Dependency Parsing (2006)

Comparison

09 09
c 08 :_ MSTParser 0.8 :_ MSTParser
.09) O\ eeeececececeee MaltParser = C O\ eeseccccecenes MaltParser
2, n O C
07 207 F
Shj - o 0.7
B >
>06F 0 Tt Q96
&) - c UbF
s | I
C 5 ‘
D05} © 05 |
& f & f
[0} — Q C
() 0.4 i 04
0.3 2 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I I’ 1 1 1 I 1 0.3 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Dependency Length Dependency Length

e Observation (McDonald & Nivre 07): MaltParser
and MSTParser make complementary mistakes.

» MSTParser computes globally optimal tree, whereas
MaltParser makes local positions.

» MSTParser features can only look at individual edges,
whereas MaltParser features can look at global tree structure.

Summary

Dependency parsing: fundamentally different style
of parsing algorithm than with PCFGs.

Much newer parsing style, but now just as popular
as PCFG parsing in current research.

Very fast in practice (e.g. MaltParser is O(n));
Google’s Parsey McParseface does ~600 words/sec.

State of the art:

» LAS around 92 on English, around 90 on German

» cool recent work trains on one language, directly used to
parse a different one (with Universal Dependencies)

