
Dependency Parsing

Computational Linguistics

Alexander Koller

19 December 2017

Discontinuous constituents

• So far, we have talked about phrase-structure parsing.
‣ substrings form constituents of various syntactic categories

‣ every constituent must be a contiguous substring

• This assumption mostly correct for English.  
For other languages, it doesn’t work so well.

Example

Das Haus bedarf vor meinem Einzug gründlicher Renovierungen.

S

NP PP VP

Det N NP

Det N

P
NP

Det N

V

the house requires before my moving-in thorough renovations

Dependency trees

• Basic idea:
‣ no constituents, just relations between words

‣ nodes of tree = words; edges = relations

‣ grammar specifies valency of each word

• Brief history:
‣ Tesniere 1953, posthumously

‣ Prague School during Cold War

‣ very important in CL since 2005 or so (Nivre, McDonald)

A dependency tree

Hans isst ein Käsebrot.

subj obj

det

Hans eats a sandwich

A dependency tree

Das Haus bedarf vor meinem Einzug gründlicher Renovierungen.

subj gen-obj

det det adj

mod

pcomp

the house requires before my moving-in thorough renovations

A dependency tree

Dem Mann wird ein Käsebrot gegeben.

vcomp

obj
dat-obj

detdet

 The man is a sandwich given

Projectivity

• Dependency tree may have crossing edges, which
cross the projection line of another word.  
 

• A dependency tree is called projective iff it has no
crossing edges.

Mann wird gegeben

Nivre-style dependency parsing

• Idea by Joakim Nivre (2003):
‣ read sentence word by word, left to right

‣ after each word, select a parser operation from large set by
consulting a machine-learned classifier

‣ original algorithm constructs only projective trees; 
can be extended to non-projective parsing too

Hans isst ein Käsebrot.

Nivre

Nivre-style dependency parsing

• Idea by Joakim Nivre (2003):
‣ read sentence word by word, left to right

‣ after each word, select a parser operation from large set by
consulting a machine-learned classifier

‣ original algorithm constructs only projective trees; 
can be extended to non-projective parsing too

Hans isst ein Käsebrot.

Nivre

Nivre-style dependency parsing

• Idea by Joakim Nivre (2003):
‣ read sentence word by word, left to right

‣ after each word, select a parser operation from large set by
consulting a machine-learned classifier

‣ original algorithm constructs only projective trees; 
can be extended to non-projective parsing too

Hans isst ein Käsebrot.

Nivre

Nivre-style dependency parsing

• Idea by Joakim Nivre (2003):
‣ read sentence word by word, left to right

‣ after each word, select a parser operation from large set by
consulting a machine-learned classifier

‣ original algorithm constructs only projective trees; 
can be extended to non-projective parsing too

Hans isst ein Käsebrot.

subj

Nivre

Nivre-style dependency parsing

• Idea by Joakim Nivre (2003):
‣ read sentence word by word, left to right

‣ after each word, select a parser operation from large set by
consulting a machine-learned classifier

‣ original algorithm constructs only projective trees; 
can be extended to non-projective parsing too

Hans isst ein Käsebrot.

subj

Nivre

Nivre-style dependency parsing

• Idea by Joakim Nivre (2003):
‣ read sentence word by word, left to right

‣ after each word, select a parser operation from large set by
consulting a machine-learned classifier

‣ original algorithm constructs only projective trees; 
can be extended to non-projective parsing too

Hans isst ein Käsebrot.

subj

Nivre

Nivre-style dependency parsing

• Idea by Joakim Nivre (2003):
‣ read sentence word by word, left to right

‣ after each word, select a parser operation from large set by
consulting a machine-learned classifier

‣ original algorithm constructs only projective trees; 
can be extended to non-projective parsing too

Hans isst ein Käsebrot.

subj

det

Nivre

Nivre-style dependency parsing

• Idea by Joakim Nivre (2003):
‣ read sentence word by word, left to right

‣ after each word, select a parser operation from large set by
consulting a machine-learned classifier

‣ original algorithm constructs only projective trees; 
can be extended to non-projective parsing too

Hans isst ein Käsebrot.

subj obj

det

Nivre

Left-Arc operation

(σ⋅i, j⋅τ, h, d) h(i) = 0  
(σ, j⋅τ, h[i ↦ j], d[i ↦ r])

i j i j

... ...
... ...

r

⇒

• Left-Arc(r): Topmost token i on stack becomes left 
r-child of next input token j. 
 

• i disappears from stack, because i can’t get further
children in a projective tree

Right-Arc operation

(σ⋅i, j⋅τ, h, d) h(j) = 0  
(σ⋅i⋅j, τ, h[j ↦ i], d[j ↦ r])

i j i j

... ...
...

...

r

⇒

• Right-Arc(r): Input token j becomes (right) r-child
of topmost stack token i. 
 

• i, j both remain on stack because they can receive
further children (on the right).

Reduce operation

(σ⋅i, τ, h, d) h(i) ≠ 0 
(σ, τ, h, d)

k

...
... ⇒

i k

...
...

• Reduce: Remove topmost token from stack. 
 
 
 
 
 

• This decides that we have seen all children of i, and
makes words further to the left available for
receiving further right children.

• Rule requires that i already has a parent.

Shift operation

(σ, j⋅τ, h, d) 
(σ⋅j, τ, h, d)

i j i j

...
...

...

...⇒

• Shift: Moves next input token j to stack. 
 
 
 
 

• Decides that j and any word i on stack are in
disjoint tree positions.

Example run

John eats a sandwich

(ε, J eats a sw)

John eats a sandwich

John eats a sandwich

Example run

John eats a sandwich

(ε, J eats a sw)

(J, eats a sw)

⇒

Shift

John eats a sandwich

John eats a sandwich

subj

Example run

John eats a sandwich

(ε, J eats a sw)

(J, eats a sw)

(ε, eats a sw)

⇒

Shift

Left-Arc(subj)

⇒ John eats a sandwich

John eats a sandwich

Example run
subj

(ε, eats a sw)

John eats a sandwich

John eats a sandwich

John eats a sandwich

Example run

(eats, a sw)

⇒

Shift

subj

subj

(ε, eats a sw)

John eats a sandwich

John eats a sandwich

John eats a sandwich

Example run

(eats, a sw)

(eats a, sw)

⇒

Shift

⇒

Shift

subj

subj

subj

(ε, eats a sw)

John eats a sandwich

John eats a sandwich

John eats a sandwich

Example run
subj

(eats a, sw)

John eats a sandwich

John eats a sandwich

John eats a sandwich

Example run

(eats, sw)

⇒

Left-Arc(det)

det

subj

subj

(eats a, sw)

John eats a sandwich

John eats a sandwich

John eats a sandwich

Example run

(eats, sw)

(eats sw, ε)

⇒

Left-Arc(det)

⇒

Right-Arc(obj)

det

obj

det

subj

subj

subj

(eats a, sw)

John eats a sandwich

John eats a sandwich

John eats a sandwich

Parsing as Classification

• Can now do deterministic parsing as follows:  
 
c = start-item  
while (c not goal-item and can apply  
 at least one parsing operation to c):  
 op = next-operation(c)  
 c = perform-operation(c, op)  

• “next-operation” chooses parsing operation to be
applied to c. How do we get it?

Learning classifier

Shift

Left-Arc

. . .

Corpus of 
derivations

(ft1(it1), ..., ftm(it1), Shift)it1

it2

itn

(ft1(it2), ..., ftm(it2), Left-Arc)

(ft1(itn+1), ..., ftm(itn+1), Shift)

. . .

Feature vectors

Train classifier

⇒
⇒

⇒

Features in MaltParser

• MaltParser (= standard implementation of Nivre
algorithm) offers “toolbox” for features:
‣ σi: i-th stack token (from the top)

‣ τi: i-th token in remaining input

‣ h(x): parent of x in the tree

‣ l(x), r(x): leftmost (rightmost) child of x in the tree

‣ p(x): POS tag of x

‣ d(x): edge label from h(x) into x

‣ build arbitrary terms from these, e.g. p(l(σ0))

The MST Parser

• Alternative idea (McDonald & Pereira, ca 2005):
‣ take graph where nodes are words of sentence, 

and a directed edge between each two nodes

‣ weight of edge represents how plausible a statistical model
finds this edge

‣ then calculate maximum spanning tree, i.e. tree that
contains all nodes and has maximum sum of edge weights.

Tarjan (1977) gives an efficient implementation of
the algorithm withO(n2) time complexity for dense
graphs, which is what we need here.
To find the highest scoring non-projective tree for

a sentence, x, we simply construct the graph Gx

and run it through the Chu-Liu-Edmonds algorithm.
The resulting spanning tree is the best non-projective
dependency tree. We illustrate here the application
of the Chu-Liu-Edmonds algorithm to dependency
parsing on the simple example x = John saw Mary,
with directed graph representation Gx,

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40
9

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that an MST in this
graph can be transformed into an MST in the orig-
inal graph (Leonidas, 2003). Thus, we recursively
call the algorithm on this graph. Note that we need
to keep track of the real endpoints of the edges into
and out of wjs for reconstruction later. Running the
algorithm, we must find the best incoming edge to
all words

root

saw

John Mary

40

30

wjs

This is a tree and thus the MST of this graph. We
now need to go up a level and reconstruct the graph.
The edge from wjs to Mary originally was from the
word saw, so we include that edge. Furthermore, the
edge from root towjs represented a tree from root to
saw to John, so we include all those edges to get the
final (and correct) MST,

root

saw

John Mary

10

3030

A possible concern with searching the entire space
of spanning trees is that we have not used any syn-
tactic constraints to guide the search. Many lan-
guages that allow non-projectivity are still primarily
projective. By searching all possible non-projective
trees, we run the risk of finding extremely bad trees.
We address this concern in Section 4.

2.2.2 Projective Trees
It is well known that projective dependency pars-

ing using edge based factorization can be handled
with the Eisner algorithm (Eisner, 1996). This al-
gorithm has a runtime of O(n3) and has been em-
ployed successfully in both generative and discrimi-
native parsing models (Eisner, 1996; McDonald et
al., 2005). Furthermore, it is trivial to show that
the Eisner algorithm solves the maximum projective
spanning tree problem.
The Eisner algorithm differs significantly from

the Chu-Liu-Edmonds algorithm. First of all, it is a
bottom-up dynamic programming algorithm as op-
posed to a greedy recursive one. A bottom-up al-
gorithm is necessary for the projective case since it
must maintain the nested structural constraint, which
is unnecessary for the non-projective case.

2.3 Dependency Trees as MSTs: Summary
In the preceding discussion, we have shown that nat-
ural language dependency parsing can be reduced to
finding maximum spanning trees in directed graphs.
This reduction results from edge-based factoriza-
tion and can be applied to projective languages with

526

Tarjan (1977) gives an efficient implementation of
the algorithm withO(n2) time complexity for dense
graphs, which is what we need here.
To find the highest scoring non-projective tree for

a sentence, x, we simply construct the graph Gx

and run it through the Chu-Liu-Edmonds algorithm.
The resulting spanning tree is the best non-projective
dependency tree. We illustrate here the application
of the Chu-Liu-Edmonds algorithm to dependency
parsing on the simple example x = John saw Mary,
with directed graph representation Gx,

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40
9

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that an MST in this
graph can be transformed into an MST in the orig-
inal graph (Leonidas, 2003). Thus, we recursively
call the algorithm on this graph. Note that we need
to keep track of the real endpoints of the edges into
and out of wjs for reconstruction later. Running the
algorithm, we must find the best incoming edge to
all words

root

saw

John Mary

40

30

wjs

This is a tree and thus the MST of this graph. We
now need to go up a level and reconstruct the graph.
The edge from wjs to Mary originally was from the
word saw, so we include that edge. Furthermore, the
edge from root towjs represented a tree from root to
saw to John, so we include all those edges to get the
final (and correct) MST,

root

saw

John Mary

10

3030

A possible concern with searching the entire space
of spanning trees is that we have not used any syn-
tactic constraints to guide the search. Many lan-
guages that allow non-projectivity are still primarily
projective. By searching all possible non-projective
trees, we run the risk of finding extremely bad trees.
We address this concern in Section 4.

2.2.2 Projective Trees
It is well known that projective dependency pars-

ing using edge based factorization can be handled
with the Eisner algorithm (Eisner, 1996). This al-
gorithm has a runtime of O(n3) and has been em-
ployed successfully in both generative and discrimi-
native parsing models (Eisner, 1996; McDonald et
al., 2005). Furthermore, it is trivial to show that
the Eisner algorithm solves the maximum projective
spanning tree problem.
The Eisner algorithm differs significantly from

the Chu-Liu-Edmonds algorithm. First of all, it is a
bottom-up dynamic programming algorithm as op-
posed to a greedy recursive one. A bottom-up al-
gorithm is necessary for the projective case since it
must maintain the nested structural constraint, which
is unnecessary for the non-projective case.

2.3 Dependency Trees as MSTs: Summary
In the preceding discussion, we have shown that nat-
ural language dependency parsing can be reduced to
finding maximum spanning trees in directed graphs.
This reduction results from edge-based factoriza-
tion and can be applied to projective languages with

526

Computing MSTs
Using the Chu-Liu-Edmonds algorithm, runtime O(n2)

pick best  
incoming edges

contract 
cycles

weight of new edge = 
weight of old edge (u,v)  
- weight of best edge into v

(root)

John

saw

Mary

9

10

9

30

20

30

0

3

11

(root)

John

saw

Mary30

20

30

(root)

John

saw

Mary

9

-10

-21 30

-20

3

-19

(root)

John

saw

Mary

pick best  
incoming edges

(root)

John

saw

Mary

-10

30

Features
a)
Basic Uni-gram Features
p-word, p-pos
p-word
p-pos
c-word, c-pos
c-word
c-pos

b)

Basic Big-ram Features
p-word, p-pos, c-word, c-pos
p-pos, c-word, c-pos
p-word, c-word, c-pos
p-word, p-pos, c-pos
p-word, p-pos, c-word
p-word, c-word
p-pos, c-pos

c)

In Between POS Features
p-pos, b-pos, c-pos
SurroundingWord POS Features
p-pos, p-pos+1, c-pos-1, c-pos
p-pos-1, p-pos, c-pos-1, c-pos
p-pos, p-pos+1, c-pos, c-pos+1
p-pos-1, p-pos, c-pos, c-pos+1

Table 1: Features used by system. p-word: word of parent node in dependency tree. c-word: word of child
node. p-pos: POS of parent node. c-pos: POS of child node. p-pos+1: POS to the right of parent in sentence.
p-pos-1: POS to the left of parent. c-pos+1: POS to the right of child. c-pos-1: POS to the left of child.
b-pos: POS of a word in between parent and child nodes.

it would typically rule out situations when a noun
attached to another noun with a verb in between,
which is a very uncommon phenomenon.
The second type of feature provides the local con-

text of the attachment, that is, the words before and
after the parent-child pair. This feature took the form
of a POS 4-gram: The POS of the parent, child,
word before/after parent and word before/after child.
The system also used back-off features to various tri-
grams where one of the local context POS tags was
removed. Adding these two features resulted in a
large improvement in performance and brought the
system to state-of-the-art accuracy.

2.5 System Summary

Besides performance (see Section 3), the approach
to dependency parsing we described has several
other advantages. The system is very general and
contains no language specific enhancements. In fact,
the results we report for English and Czech use iden-
tical features, though are obviously trained on differ-
ent data. The online learning algorithms themselves
are intuitive and easy to implement.
The efficient O(n3) parsing algorithm of Eisner

allows the system to search the entire space of de-
pendency trees while parsing thousands of sentences
in a few minutes, which is crucial for discriminative
training. We compare the speed of our model to a
standard lexicalized phrase structure parser in Sec-
tion 3.1 and show a significant improvement in pars-
ing times on the testing data.
The major limiting factor of the system is its re-

striction to features over single dependency attach-
ments. Often, when determining the next depen-

dent for a word, it would be useful to know previ-
ous attachment decisions and incorporate these into
the features. It is fairly straightforward to modify
the parsing algorithm to store previous attachments.
However, any modification would result in an as-
ymptotic increase in parsing complexity.

3 Experiments

We tested our methods experimentally on the Eng-
lish Penn Treebank (Marcus et al., 1993) and on the
Czech Prague Dependency Treebank (Hajič, 1998).
All experiments were run on a dual 64-bit AMD
Opteron 2.4GHz processor.
To create dependency structures from the Penn

Treebank, we used the extraction rules of Yamada
and Matsumoto (2003), which are an approximation
to the lexicalization rules of Collins (1999). We split
the data into three parts: sections 02-21 for train-
ing, section 22 for development and section 23 for
evaluation. Currently the system has 6, 998, 447 fea-
tures. Each instance only uses a tiny fraction of these
features making sparse vector calculations possible.
Our system assumes POS tags as input and uses the
tagger of Ratnaparkhi (1996) to provide tags for the
development and evaluation sets.
Table 2 shows the performance of the systems

that were compared. Y&M2003 is the SVM-shift-
reduce parsing model of Yamada and Matsumoto
(2003), N&S2004 is the memory-based learner of
Nivre and Scholz (2004) and MIRA is the the sys-
tem we have described. We also implemented an av-
eraged perceptron system (Collins, 2002) (another
online learning algorithm) for comparison. This ta-
ble compares only pure dependency parsers that do

95

p = parent; c = child; b = word between parent and child in string

• Learn weight for each feature from training data.
‣ using MIRA algorithm, which tries to maximize difference

between score of correct parse and score of best wrong parse

• Typically many features (millions).

Evaluation

• Which proportion of edges predicted correctly?
‣ label accuracy:  

#(nodes with correct label of incoming edge) / #nodes

‣ unlabeled attachment score:  
#(nodes with correct parent) / #nodes

‣ labeled attachment score (LAS):  
#(nodes with correct parent and edge label) / #nodes

Nivre vs McDonald

McDonald Nivre
Arabic 66.91 66.71

Bulgarian 87.57 87.41
Chinese 85.90 86.92

Czech 80.18 78.42
Danish 84.79 84.77
Dutch 79.19 78.59

German 87.34 85.82
Japanese 90.71 91.65

Portuguese 86.82 87.60
Slovene 73.44 70.30
Spanish 82.25 81.29
Swedish 82.55 84.58
Turkish 63.19 65.68
Overall 80.83 80.75

Table 1: Labeled parsing accuracy for top scoring
systems at CoNLL-X (Buchholz and Marsi, 2006).

on a variety of languages, as seen in Table 1, which
shows results for the two top performing systems in
the CoNLL-X shared task, McDonald et al. (2006)
(“all-pairs”) and Nivre et al. (2006) (“stepwise”).

Despite the similar performance in terms of over-
all accuracy, there are indications that the two types
of models exhibit different behaviour. For example,
Sagae and Lavie (2006) displayed that combining
the predictions of both parsing models can lead to
significantly improved accuracies. In order to pave
the way for new and better methods, a much more
detailed error analysis is needed to understand the
strengths and weaknesses of different approaches.
In this work we set out to do just that, focusing on
the two top performing systems from the CoNLL-X
shared task as representatives of the two dominant
models in data-driven dependency parsing.

2 Two Models for Dependency Parsing

2.1 Preliminaries

Let L = {l1, . . . , l|L|} be a set of permissible arc
labels. Let x = w0, w1, . . . , wn be an input sen-
tence where w0=root. Formally, a dependency graph
for an input sentence x is a labeled directed graph
G = (V,A) consisting of a set of nodes V and a
set of labeled directed arcs A � V � V � L, i.e., if
(i, j, l) � A for i, j � V and l � L, then there is an

arc from node i to node j with label l in the graph.
A dependency graph G for sentence x must satisfy
the following properties:

1. V = {0, 1, . . . , n}

2. If (i, j, l) � A, then j �= 0.

3. If (i, j, l) � A, then for all i� � V � {i} and
l� � L, (i�, j, l�) /� A.

4. For all j � V �{0}, there is a (possibly empty)
sequence of nodes i1, . . . , im�V and labels
l1, . . . , lm, l�L such that (0, i1, l1),(i1, i2, l2),
. . . , (im, j, l)�A.

The constraints state that the dependency graph
spans the entire input (1); that the node 0 is a root
(2); that each node has at most one incoming arc
in the graph (3); and that the graph is connected
through directed paths from the node 0 to every other
node in the graph (4). A dependency graph satisfy-
ing these constraints is a directed tree originating out
of the root node 0. We say that an arc (i, j, l) is non-
projective if not all words k occurring between i and
j in the linear order are dominated by i (where dom-
inance is the transitive closure of the arc relation).

2.2 Global, Exhaustive, Graph-Based Parsing
For an input sentence, x = w0, w1, . . . , wn consider
the dense graph Gx = (Vx, Ax) where:

1. Vx = {0, 1, . . . , n}
2. Ax = {(i, j, l) | � i, j � Vx and l � L}

Let D(Gx) represent the subgraphs of graph Gx

that are valid dependency graphs for the sentence
x. Since Gx contains all possible labeled arcs, the
set D(Gx) must necessarily contain all valid depen-
dency graphs for x.

Assume that there exists a dependency arc scoring
function, s : V � V � L � R. Furthermore, define
the score of a graph as the sum of its arc scores,

s(G = (V,A)) =
�

(i,j,l)�A

s(i, j, l)

The score of a dependency arc, s(i, j, l) represents
the likelihood of creating a dependency from word
wi to word wj with the label l. If the arc score func-
tion is known a priori, then the parsing problem can
be stated as,

123

LAS in CoNLL-X Shared Task on Multilingual Dependency Parsing (2006)

Comparison

0 5 10 15 20 25 30

Dependency Length

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D
e
p
e
n
d
e
n
c
y
 P

re
c
is

io
n MSTParser

MaltParser

0 5 10 15 20 25 30

Dependency Length

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D
e
p
e
n
d
e
n
c
y
 R

e
c
a
ll

MSTParser

MaltParser

Figure 3: Dependency arc precision/recall relative to predicted/gold dependency length.

of the plot. The high performance for root modifica-
tion (distance of 1) can be explained through the fact
that this is typically a low entropy decision – usu-
ally the parsing algorithm has to determine the main
verb from a small set of possibilities. On the other
end of the plot there is a sharp downwards spike for
arcs of distance greater than 10. It turns out that
MSTParser over-predicts arcs near the bottom of the
graph. Whereas MaltParser pushes difficult parsing
decisions higher in the graph, MSTParser appears to
push these decisions lower.

The next graph property we will examine aims to
quantify the local neighbourhood of an arc within
a dependency graph. Two dependency arcs, (i, j, l)
and (i�, j�, l�) are classified as siblings if they repre-
sent syntactic modifications of the same word, i.e.,
i = i�. Figure 5 measures the precision and recall
of each system relative to the number of predicted
and gold standard siblings of each arc. There is
not much to distinguish between the parsers on this
metric. MSTParser is slightly more precise for arcs
that are predicted with more siblings, whereas Malt-
Parser has slightly higher recall on arcs that have
more siblings in the gold standard tree. Arcs closer
to the root tend to have more siblings, which ties this
result to the previous ones.

The final graph property we wish to look at is the
degree of non-projectivity. The degree of a depen-
dency arc from word w to word u is defined here
as the number of words occurring between w and u
that are not descendants of w and modify a word that
does not occur between w and u (Nivre, 2006). In
the example from Figure 1, the arc from jedna to Z
has a degree of one, and all other arcs have a degree
of zero. Figure 6 plots dependency arc precision and
recall relative to arc degree in predicted and gold
standard dependency graphs. MSTParser is more

precise when predicting arcs with high degree and
MaltParser vice-versa. Again, this can be explained
by the fact that there is a tight correlation between a
high degree of non-projectivity, dependency length,
distance to root and number of siblings.

4.3 Linguistic Factors

It is important to relate each system’s accuracy to a
set of linguistic categories, such as parts of speech
and dependency types. Therefore, we have made
an attempt to distinguish a few broad categories
that are cross-linguistically identifiable, based on the
available documentation of the treebanks used in the
shared task.

For parts of speech, we distinguish verbs (includ-
ing both main verbs and auxiliaries), nouns (includ-
ing proper names), pronouns (sometimes also in-
cluding determiners), adjectives, adverbs, adposi-
tions (prepositions, postpositions), and conjunctions
(both coordinating and subordinating). For depen-
dency types, we distinguish a general root category
(for labels used on arcs from the artificial root, in-
cluding either a generic label or the label assigned
to predicates of main clauses, which are normally
verbs), a subject category, an object category (in-
cluding both direct and indirect objects), and various
categories related to coordination.

Figure 7 shows the accuracy of the two parsers
for different parts of speech. This figure measures
labeled dependency accuracy relative to the part of
speech of the modifier word in a dependency rela-
tion. We see that MaltParser has slightly better ac-
curacy for nouns and pronouns, while MSTParser
does better on all other categories, in particular con-
junctions. This pattern is consistent with previous
results insofar as verbs and conjunctions are often
involved in dependencies closer to the root that span

127

• Observation (McDonald & Nivre 07): MaltParser
and MSTParser make complementary mistakes.
‣ MSTParser computes globally optimal tree, whereas

MaltParser makes local positions.

‣ MSTParser features can only look at individual edges,
whereas MaltParser features can look at global tree structure.

Summary

• Dependency parsing: fundamentally different style
of parsing algorithm than with PCFGs.

• Much newer parsing style, but now just as popular
as PCFG parsing in current research.

• Very fast in practice (e.g. MaltParser is O(n));  
Google’s Parsey McParseface does ~600 words/sec.

• State of the art:
‣ LAS around 92 on English, around 90 on German

‣ cool recent work trains on one language, directly used to
parse a different one (with Universal Dependencies)

