
Advanced PCFG Parsing

Computational Linguistics 

Alexander Koller

8 December 2017

Today

• Parsing schemata and agenda-based parsing.

• Semiring parsing.

• Pruning techniques for chart parsing.

The CKY Algorithm

Cell at column i, row k: 
{ A | A ⇒* wi … wk-1 }

k
=

3
4

5
8

i = 2 3 4 5

CKY computes claims  
about string

VP NP N PP

VP NP N

Det

V

shot

an

elephant

in my pyjamas

…
 el

ep
ha

nt

…
 an

…
 sh

ot

…
 in

 m
y

py
ja

m
as

Chart

CKY as parsing schema

• Makes claims about the string: Entering A into
Ch(i,k) means algorithm thinks A ⇒* wi … wk-1.

• Write this claim as item (A, i, k). This is like a logic
formula that is true iff A ⇒* wi … wk-1.

• Write parsing schema that shows how new items
can be derived from old items.
‣ very general view; applies to algorithms beyond CKY

‣ supports generalized implementations

Shieber

CKY as parsing schema

• Parsing schema for CKY has a single rule:

• One benefit: can literally read off parsing complexity.
‣ rules have at most three independent variables for string

positions (i, j, k)

‣ therefore complexity is O(n3)

A → B C (B, i, j) (C, j, k)
(A, i, k)

Implementing schemas

• Can generally implement parser for given schema in
the following way:
‣ maintain an agenda: queue of items that we have discovered,

but not yet attempted to combine with other items

‣ maintain a chart of all seen items for the sentence

rules of parsing  
schema used here

initialize chart and agenda with all start items

while agenda not empty:
 item = dequeue(agenda)
 for each combination c of item with other item in the chart:
 if c not in chart:
 add c to chart
 enqueue c in agenda

if chart contains a goal item, claim w ∈ L(G)

Implementing schemas

• Can generally implement parser for given schema in
the following way:
‣ maintain an agenda: queue of items that we have discovered,

but not yet attempted to combine with other items

‣ maintain a chart of all seen items for the sentence

rules of parsing  
schema used here

initialize chart and agenda with all start items

while agenda not empty:
 item = dequeue(agenda)
 for each combination c of item with other item in the chart:
 if c not in chart:
 add c to chart
 enqueue c in agenda

if chart contains a goal item, claim w ∈ L(G)

essential to do  
this efficiently

Example
agenda:

chart:

(V, 2, 3) (Det, 3, 4) (N, 4, 5)(PP, 5, 8)

V

Det

N

PP

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

(V, 2, 3) (Det, 3, 4) (N, 4, 5)(PP, 5, 8)

V

Det

N

PP

(N, 4, 8)

N

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

(V, 2, 3) (Det, 3, 4) (N, 4, 5)

V

Det

N

PP

(N, 4, 8)

N

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

(Det, 3, 4) (N, 4, 5)

V

Det

N

PP

(N, 4, 8)

N

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

(Det, 3, 4) (N, 4, 5)

V

Det

N

PP

(NP, 3, 5)

NP

(N, 4, 8)

N

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

(Det, 3, 4) (N, 4, 5)

V

Det

N

PP

(NP, 3, 5)

NP

(N, 4, 8)

N

(NP, 3, 8)

NP

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

(N, 4, 5)

V

Det

N

PP

(NP, 3, 5)

NP

(N, 4, 8)

N

(NP, 3, 8)

NP

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

V

Det

N

PP

(NP, 3, 5)

NP

(N, 4, 8)

N

(NP, 3, 8)

NP

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

V

Det

N

PP

(NP, 3, 5)

NP

N

(NP, 3, 8)

NP

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

V

Det

N

PP

(NP, 3, 5)

NP

N

(VP, 2, 5)

VP

(NP, 3, 8)

NP

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

V

Det

N

PP

NP

N

(VP, 2, 5)

VP

(NP, 3, 8)

NP

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

V

Det

N

PP

NP

N

(VP, 2, 5)

VP

(NP, 3, 8)

NP

(VP, 2, 8)

VP

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

V

Det

N

PP

NP

N

(VP, 2, 5)

VP

NP

(VP, 2, 8)

VP

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

V

Det

N

PP

NP

N

VP

NP

(VP, 2, 8)

VP

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Example
agenda:

chart:

V

Det

N

PP

NP

N

VP

NPVP

…
3

…
4

…
5

…
8

2… 3… 4… 5…

Semiring parsing

• We have seen a number of algorithms on CKY
charts that all look basically the same.
‣ decide word problem

‣ compute best parse

‣ compute inside probabilities

‣ compute number of parse trees

• What exactly do they have in common?  
Can we use it to build better algorithms?

CKY for recognition

for each i from 1 to n:  
 for each production rule A " wi:  
 Ch(A, i, i+1) = true  

for each width b from 2 to n:  
 for each start position i from 1 to n-b+1:  
 for each left width k from 1 to b-1:  
 for each production rule A " B C: 
 Ch(A, i, i+b)
 = Ch(A, i, i+b) ∨  
 (Ch(B, i, i+k) ∧ Ch(C, i+k, i+b) ∧ true)

return Ch(S, 1, n+1)

Viterbi-CKY

for each i from 1 to n:  
 for each production rule A " wi:  
 Ch(A, i, i+1) = P(A " wi)  

for each width b from 2 to n:  
 for each start position i from 1 to n-b+1:  
 for each left width k from 1 to b-1:  
 for each production rule A " B C: 
 Ch(A, i, i+b)
 = max(Ch(A, i, i+b),  
 Ch(B, i, i+k) * Ch(C, i+k, i+b) * P(A " B C))

return Ch(S, 1, n+1)

Inside

for each i from 1 to n:  
 for each production rule A " wi:  
 Ch(A, i, i+1) = P(A " wi)  

for each width b from 2 to n:  
 for each start position i from 1 to n-b+1:  
 for each left width k from 1 to b-1:  
 for each production rule A " B C: 
 Ch(A, i, i+b)
 = Ch(A, i, i+b) +  
 (Ch(B, i, i+k) * Ch(C, i+k, i+b) * P(A " B C))

return Ch(S, 1, n+1)

Counting

for each i from 1 to n:  
 for each production rule A " wi:  
 Ch(A, i, i+1) = 1  

for each width b from 2 to n:  
 for each start position i from 1 to n-b+1:  
 for each left width k from 1 to b-1:  
 for each production rule A " B C: 
 Ch(A, i, i+b)
 = Ch(A, i, i+b) +  
 (Ch(B, i, i+k) * Ch(C, i+k, i+b) * 1)

return Ch(S, 1, n+1)

Semirings

• A semiring is a 5-tuple consisting of
‣ a nonempty set V of values

‣ an addition ⊕ : V × V → V, associative and commutative

‣ a multiplication ⊗ : V × V → V, must be associative 
and distribute over ⊕

‣ an abstract zero 0 ∈ V such that 0 ⊕ v = v ⊕ 0 = v 
and 0 ⊗ v = v ⊗ 0 = 0, for all v

‣ an abstract one 1 ∈ V such that 1 ⊗ v = v ⊗ 1 = v, for all v

A semiring where ⊕ has inverse elements is called a ring
— really important in math, but not so much in this course.

Some important semirings

values addition multiplication zero one

counting N0 + * 0 1

boolean {true, false} ∨ ∧ false true

Viterbi [0, 1] max * 0 1

inside [0, ∞] + * 0 1

Generic CKY with semirings

for each i from 1 to n:  
 for each production rule A " wi:  
 Ch(A, i, i+1) = R(A " wi)  

for each width b from 2 to n:  
 for each start position i from 1 to n-b+1:  
 for each left width k from 1 to b-1:  
 for each production rule A " B C: 
 Ch(A, i, i+b)
 = Ch(A, i, i+b) ⊕  
 (Ch(B, i, i+k) ⊗ Ch(C, i+k, i+b) ⊗ R(A " B C))

return Ch(S, 1, n+1)

assume evaluation function R: rules → V

This generalizes all the variants we saw above.

Semirings and agenda parsing

for each start item I:
 enqueue I in agenda
 chart(I) = R(I)

while agenda not empty:
 item = dequeue(agenda)
 for each combination c of item with other item in the chart:
 if Chart(c) = 0:
 enqueue c in agenda
 chart(c) = chart(c) ⊕ R(c)

return chart(goal item)

R(c) = R(rule) ⊗ chart(premise1) ⊗ … ⊗ chart(premisen)

Some further details

• Can define top-down variant to compute outside.

• Works best for charts without cycles.
‣ cycles appear when grammar has unary rules A → B

‣ but can be made to work for charts with cycles under
certain circumstances, see Goodman paper

Pruning techniques

• If grammar is big and sentence is not short,
computing the full chart is expensive.
‣ runtime of CKY is O(|G| * n3)

‣ for treebank grammars, almost every substring can be
derived from some nonterminal

• Most chart entries not used to build best parse tree.

• Pruning: avoid computing the full chart
‣ beam search: limit number of entries per chart cell

‣ best-first search: manipulate order in which items are taken
from the agenda

Inside and outside probs

S

NP

John

VP

sleeps

0.3

0.4 0.5 inside: 0.5 
outside: 0.12

inside: 0.4 
outside: 0.15

inside: 0.06 
outside: 1

‣ For each individual parse tree, the product of inside and outside
probabilities is same at every node.

‣ If we could calculate (inside * outside) for each chart item, then we
could focus search on just the items that are needed for best parse.

Figures of Merit

• Challenge in bottom-up parsing:
‣ We can easily compute (Viterbi) inside of each item. 

(Viterbi inside = max P(t); inside = Σ P(t).)

‣ We cannot easily compute (Viterbi) outside, because we
haven’t combined item with other words yet.

• Idea: estimate (inside * outside) with a figure of
merit (FOM) of the parse item.
‣ FOM = Viterbi inside prob:  

underestimates quality of long substrings

‣ FOM = (Viterbi inside)1 / |substring| :  
works okay in practice, but still ignores outside probs

Beam search

• In CKY parsing, easiest way of using FOMs is  
beam search:
‣ fix a number k of nonterminals that can be stored in each

chart cell

‣ only retain the k nonterminals with the best FOM

‣ variant: only retain the nonterminals whose FOM is at least
θ * f, where f is FOM of best nonterminal in same cell

• Beam search very standard technique in parsing
and machine translation (including decoding of
neural network outputs).

Best-first parsing

• Idea: Agenda contains parse items (A, i, k); 
order them in descending order of their FOMs.

• If FOM were perfect, then first discovered goal item
represents the best parse, and many unexplored items
still on agenda ⇒ faster parser.

• If FOM is not perfect, parser can make search errors:
first discovered goal item is not optimal.
‣ can still be much faster than exhaustive parsing

‣ accuracy depends on quality of FOM

A* parsing

• A* search: general method for heuristic search in AI
‣ FOM h = (distance f from start) + (estimated distance g to goal)

‣ g must underestimate distance, i.e. never be larger than true
distance

‣ guarantees that first path to goal we find is optimal

• Apply this to parsing (Klein & Manning 03):
‣ f = - log inside

‣ g = estimate of - log outside

Outside estimates

Estimate SX SXL SXLR TRUE
Summary (1,6,NP) (1,6,NP,VBZ) (1,6,NP,VBZ,”,”) (entire context)

Best Tree
S

PP

IN

?

NP

NP

,

?

NP

DT

?

JJ

?

NN

?

VP

VBD

?

.

?

S

VP

VBZ

VBZ

NP

NP

PP

IN

?

NP

DT

?

NNP

?

NNP

?

NNP

?

NNP

?

S

VP

VBZ

VBZ

NP

NP

NP

,

,

CC

?

NP

DT

?

JJ

?

NN

?

,

?

S

S

VP

VBZ

VBZ

NP

NP

,

,

NP

PRP

PRP

VP

VBZ

VBZ

NP

DT

DT

NN

NN

.

.

Score -11.3 -13.9 -15.1 -18.1
(a) (b) (c) (d)

Figure 2: Best outside parses given richer summaries of edge context. (a – SX) Knowing only the edge state (NP) and
the left and right outside spans, (b – SXL) also knowing the left tag, (c – SXLR) knowing the left and right tags, and (d
– TRUE) knowing the entire outside context.

Second, it must be monotonic, meaning that as one
explores a path to the goal, the combined cost
does not decrease.
For parsing, this means we can add any admissi-

ble, monotonic estimate of to our current esti-
mate of . We will still have a correct algorithm,
and even rough heuristics can dramatically cut down
the number of edges processed, and therefore the
total work involved in parsing. We present sev-
eral estimates, describe how to pre-compute them
efficiently, and show the edge savings when pars-
ing Penn treebank WSJ sentences. We also sketch
proofs of correctness for A* parsing.

3 A Estimates for Parsing
When parsing, each edge spans some part of
the sentence. Its yield is the terminals in the sen-
tence it spans. Its context is the rest of the sen-
tence. We called the spans and of the
context the left and right span, respectively, or the
split outside span as a pair. Their sum is the com-
bined outside span. For concreteness, all scores will
be log-probabilities, and lower cost is higher log-
probability. To avoid confusion, ‘ ’ or ‘better’ will
mean higher probability.
One way to construct an admissible estimate is to

summarize the context in some way, and to find the
score of the best parse of any context that fits that
summary. If we give no information in the sum-
mary, the estimate will be 0. This is the trival es-
timate NULL, and corresponds to simply using in-
side scores alone as priorities. On the other hand,
the ideal estimate for is , the true outside Viterbi
score of that exact context, which we call TRUE. It
would be impractical to precompute TRUE in prac-
tice, but we can still find its value for any given con-
text by exhaustive parsing. It is worth noting that

our ideal estimate is not like the ideal FOM,
rather it is where is a best parse
of the goal among those which contain , and
is a best parse of over the yield of .
We used various summaries, some illustrated in

figure 2. S consists of only the combined outside
span, while S is the split outside span. SX also in-
cludes ’s label. SXL and SXR add the tags adja-
cent to on the left and right respectively. S XLR
includes both the left and right tags, but uses the
combined outside span. This was done solely to
reduce memory usage; it is no quicker to calculate
with combined outside span than split outside span,
but more compact to store.
As the summaries become richer, the estimates

become sharper. As an example, consider an NP in
the context “VBZ NP , PRP VBZ DT NN .” shown in
figure 2.1 The summary SX tells us only that there is
an NP with 6 words to the left and 1 to the right, and
gives an estimate of . This score is backed by
the concrete parse shown in figure 2(a). Now, this
is a best parse of a context compatible with what
little we specified, but very optimistic. It assumes
very common tags in very common patterns. SXL
adds that the tag to the left is VBZ, and the hope
that the NP is part of a sentence-initial PP must be
abandoned; the best score drops to , backed
by the parse in figure 2(b). Specifying the right tag
to be “,” drops the score further to , given by
figure 2(c). The actual best parse is figure 2(d), with
a score of .
All of the summaries described above use some-

what local information, combined with spans. F is
a less local estimate. It tracks, for each state, what

1Our examples, and our experiments, used delexicalized
sentences from the Penn treebank.

‣ Represent each parse item with a summary, which abstracts over the
concrete sentence we are parsing.

‣ Compute outside estimates for each possible summary from grammar,
before we start parsing actual sentences.

A* parsing: Results

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0 2000 4000 6000 8000 10000

Edges Processed

Se
nt

en
ce

s
Pa

rs
ed

BF
SXF
B
SXR
SXL
SX
S

Figure 7: Number of sentences parsed as more edges are ex-
panded. Sentences are Penn treebank sentences of length 18–26
parsed with the treebank grammar. A typical number of edges
in an exhaustive parse is 150,000. Even relatively simple A*
estimates allow substantial savings.

dropping the portion which precedes the dot. Figure 6
shows the overall savings for several estimates of each
type. The I-tries were superior for the coarser estimates,
while O-tries were superior for the finer estimates. In
addition, only O-tries permit the accelerated version of
F, since they explicitly declare their right requirements.
Additionally, with I-tries, only the top-level intermedi-
ate rules have probability less than 1, while for O-tries,
one can back-weight probability as in (Mohri, 1997), also
shown in figure 5, enabling sub-parts of rare rules to be
penalized even before they are completed.8 For all sub-
sequent results, we discuss only the O-trie numbers.
Figure 8 lists the overall savings for each context sum-

mary estimate, with and without F joined in. We see that
the NULL estimate (i.e., uniform cost search) is not very
effective – alone it only blocks 11% of the edges. But it
is still better than exhaustive parsing: with it, one stops
parsing when the best parse is found, while in exhaustive
parsing one continues until no edges remain. Even the
simplest non-trivial estimate, S, blocks 40% of the edges,
and the best estimate BF blocks over 97% of the edges, a
speed-up of over 35 times, without sacrificing optimality
or algorithmic complexity.
For comparison to previous FOM work, figure 7

shows, for an edge count and an estimate, the propor-
tion of sentences for which a first parse was found us-
ing at most that many edges. To situate our results, the
FOMs used by (Caraballo and Charniak, 1998) require
10K edges to parse 96% of these sentences, while BF re-
quires only 6K edges. On the other hand, the more com-
plex, tuned FOM in (Charniak et al., 1998) is able to parse
all of these sentences using around 2K edges, while BF
requires 7K edges. Our estimates do not reduce the to-
tal edge count quite as much as the best FOMs can, but
they are in the same range. This is as much as one could
possibly expect, since, crucially, our first parses are al-

8However, context summary estimates which include the
state compensate for this automatically.

Estimate Savings w/ Filter Storage Precomp
NULL 11.2 58.3 0K none
S 40.5 77.8 2.5K 1 min
SX 80.3 95.3 5M 1 min
SXL 83.5 96.1 250M 30 min
S1XLR 93.5 96.5 500M 480 min
SXR 93.8 96.9 250M 30 min

SXMLR 94.3 97.1 500M 60 min
B 94.6 97.3 1G 540 min

Figure 8: The trade-off between online savings and precompu-
tation time.

ways optimal, while the FOM parses need not be (and
indeed sometimes are not).9 Also, our parser never needs
to propagate score changes upwards, and so may be ex-
pected to do less work overall per edge, all else being
equal. This savings is substantial, even if no propaga-
tion is done, because no data structure needs to be cre-
ated to track the edges which are supported by each given
edge (for us, this represents a factor of approximately
2 in memory savings). Moreover, the context summary
estimates require only a single table lookup per edge,
while the accelerated version of F requires only a rapid
quadratic scan of the input per sentence (less than 1% of
parse time per sentence), followed by a table lookup per
edge. The complex FOMs in (Charniak et al., 1998) re-
quire somewhat more online computation to assemble.
It is interesting that SXR is so much more effective than

SXL; this is primarily because of the way that the rules
have been encoded. If we factor the rules in the other
direction, we get the opposite effect. Also, when com-
bined with F, the difference in their performance drops
from 10.3% to 0.8%; F is a right-filter and is partially
redundant when added to SXR, but is orthogonal to SXL.

3.4 Estimate Sharpness
A disadvantage of admissibility for the context summary
estimates is that, necessarily, they are overly optimistic
as to the contents of the outside context. The larger the
outside context, the farther the gap between the true cost
and the estimate. Figure 9 shows average outside esti-
mates for Viterbi edges as span size increases. For small
outside spans, all estimates are fairly good approxima-
tions of TRUE. As the span increases, the approximations
fall behind. Beyond the smallest outside spans, all of the
curves are approximately linear, but the actual value’s
slope is roughly twice that of the estimates. The gap
between our empirical methods and the true cost grows
fairly steadily, but the differences between the empirical
methods themselves stay relatively constant. This reflects

9In fact, the bias from the FOM commonly raises the bracket
accuracy slightly over the Viterbi parses, but that difference nev-
ertheless demonstrates that the first parses are not always the
Viterbi ones. In our experiments, non-optimal pruning some-
times bought slight per-node accuracy gains at the cost of a
slight drop in exact match.

45

Coarse-to-fine parsing

• Idea: make coarser-grained grammar by combining
“similar” nonterminals into one (Charniak et al. 06).
‣ combine S, VP, S-bar, etc. into “S_”

‣ combine S_ and N_ into “HP” (head phrase); etc.

• Compute complete parse chart with coarse-grained
grammar; calculate exact inside and outside.

• Prune out entries with low inside * outside.  
Refine the others, then repeat until we have chart of
original grammar.

CTF parsing: Results

Level Constits Constits % Pruned
Produced Pruned

∗106 ∗106

0 8.82 7.55 86.5
1 9.18 6.51 70.8
2 11.2 9.48 84.4
3 11,8 0 0.0

total 40.4 – –
3-only 392.0 0 0

Figure 5: Total constituents pruned at all levels
for WSJ section 23, sentences of length ≤ 100

debate in the literature on using estimates of
the outside probability in Equation 1, or instead
computing the exact upper bound. The idea is
that an exact upper bound gives one an admis-
sible search heuristic but at a cost, since it is a
less accurate estimator of the true outside prob-
ability. (Note that even the upper bound does
not, in general, keep all of the gold constituents,
since a non-perfect model will assign some of
them low probability.) As is clear from Figure
3, the estimate works very well indeed.

On the basis of this graph, we set the lowest
allowable constituent probability at ≥ 5 · 10−4,
≥ 10−5, and ≥ 10−4 for levels 0,1, and 2, re-
spectively. No pruning is done at level 3, since
there is no level 4. After setting the pruning
parameters on the development set we proceed
to parse the test set (WSJ section 23). Figure 5
shows the resulting pruning statistics. The to-
tal number of constituents created at level 0, for
all sentences combined, is 8.82 · 106. Of those
7.55 · 106 (or 86.5%) are pruned before going on
to level 1. At level 1, the 1.3 million left over
from level 0 expanded to a total of 9.18 · 106.
70.8% of these in turn are pruned, and so forth.
The percent pruned at, e.g., level 1 in Figure 3
is much higher than that shown here because it
considers all of the possible level-1 constituents,
not just those left unpruned after level 0.

There is no pruning at level 3. There we sim-
ply return the Viterbi parse. We also show that
with pruning we generate a total of 40.4 · 106

constituents. For comparison exhaustively pars-
ing using the tree-bank grammar yields a total
of 392 · 106 constituents. This is the factor-of-10

Level Time for Level Running Total
0 1598 1598
1 2570 4168
2 4303 8471
3 1527 9998

3-only 114654 –

Figure 6: Running times in seconds on WSJ sec-
tion 23, with and without pruning

workload reduction mentioned in Section 1.

There are two points of interest. The first is
that each level of pruning is worthwhile. We do
not get most of the effect from one or the other
level. The second point is that we get signif-
icant pruning at level 0. The reader may re-
member that level 0 distinguishes only between
the root node and the rest. We initially ex-
pected that it would be too coarse to distinguish
good from bad constituents at this level, but it
proved as useful as the other levels. The expla-
nation is that this level does use the full tree-
bank preterminal tags, and in many cases these
alone are sufficient to make certain constituents
very unlikely. For example, what is the proba-
bility of any constituent of length two or greater
ending in a preposition? The answer is: very
low. Similarly for constituents of length two or
greater ending in modal verbs, and determiners.
Not quite so improbable, but nevertheless less
likely than most, would be constituents ending
in verbs, or ending just short of the end of the
sentence.

Figure 6 shows how much time is spent at each
level of the algorithm, along with a running to-
tal of the time spent to that point. (This is for
all sentences in the test set, length ≤ 100.) The
number for the unpruned parser is again about
ten times that for the pruned version, but the
number for the standard CKY version is prob-
ably too high. Because our CKY implementa-
tion is quite slow, we ran the unpruned version
on many machines and summed the results. In
all likelihood at least some of these machines
were overloaded, a fact that our local job dis-
tributer would not notice. We suspect that the
real number is significantly lower, though still

173

Level Constits Constits % Pruned
Produced Pruned

∗106 ∗106

0 8.82 7.55 86.5
1 9.18 6.51 70.8
2 11.2 9.48 84.4
3 11,8 0 0.0

total 40.4 – –
3-only 392.0 0 0

Figure 5: Total constituents pruned at all levels
for WSJ section 23, sentences of length ≤ 100

debate in the literature on using estimates of
the outside probability in Equation 1, or instead
computing the exact upper bound. The idea is
that an exact upper bound gives one an admis-
sible search heuristic but at a cost, since it is a
less accurate estimator of the true outside prob-
ability. (Note that even the upper bound does
not, in general, keep all of the gold constituents,
since a non-perfect model will assign some of
them low probability.) As is clear from Figure
3, the estimate works very well indeed.

On the basis of this graph, we set the lowest
allowable constituent probability at ≥ 5 · 10−4,
≥ 10−5, and ≥ 10−4 for levels 0,1, and 2, re-
spectively. No pruning is done at level 3, since
there is no level 4. After setting the pruning
parameters on the development set we proceed
to parse the test set (WSJ section 23). Figure 5
shows the resulting pruning statistics. The to-
tal number of constituents created at level 0, for
all sentences combined, is 8.82 · 106. Of those
7.55 · 106 (or 86.5%) are pruned before going on
to level 1. At level 1, the 1.3 million left over
from level 0 expanded to a total of 9.18 · 106.
70.8% of these in turn are pruned, and so forth.
The percent pruned at, e.g., level 1 in Figure 3
is much higher than that shown here because it
considers all of the possible level-1 constituents,
not just those left unpruned after level 0.

There is no pruning at level 3. There we sim-
ply return the Viterbi parse. We also show that
with pruning we generate a total of 40.4 · 106

constituents. For comparison exhaustively pars-
ing using the tree-bank grammar yields a total
of 392 · 106 constituents. This is the factor-of-10

Level Time for Level Running Total
0 1598 1598
1 2570 4168
2 4303 8471
3 1527 9998

3-only 114654 –

Figure 6: Running times in seconds on WSJ sec-
tion 23, with and without pruning

workload reduction mentioned in Section 1.

There are two points of interest. The first is
that each level of pruning is worthwhile. We do
not get most of the effect from one or the other
level. The second point is that we get signif-
icant pruning at level 0. The reader may re-
member that level 0 distinguishes only between
the root node and the rest. We initially ex-
pected that it would be too coarse to distinguish
good from bad constituents at this level, but it
proved as useful as the other levels. The expla-
nation is that this level does use the full tree-
bank preterminal tags, and in many cases these
alone are sufficient to make certain constituents
very unlikely. For example, what is the proba-
bility of any constituent of length two or greater
ending in a preposition? The answer is: very
low. Similarly for constituents of length two or
greater ending in modal verbs, and determiners.
Not quite so improbable, but nevertheless less
likely than most, would be constituents ending
in verbs, or ending just short of the end of the
sentence.

Figure 6 shows how much time is spent at each
level of the algorithm, along with a running to-
tal of the time spent to that point. (This is for
all sentences in the test set, length ≤ 100.) The
number for the unpruned parser is again about
ten times that for the pruned version, but the
number for the standard CKY version is prob-
ably too high. Because our CKY implementa-
tion is quite slow, we ran the unpruned version
on many machines and summed the results. In
all likelihood at least some of these machines
were overloaded, a fact that our local job dis-
tributer would not notice. We suspect that the
real number is significantly lower, though still

173

… at no loss in f-score with their grammar.

Summary

• PCFG parsing one of the most successful fields of
NLP research.

• Current parsers are fast and quite accurate.
‣ in practice, most people use Berkeley or Stanford parser  

for good speed-accuracy-convenience tradeoff

• Techniques from PCFG parsing carry over to many
other problems in computational linguistics.

