# Advanced PCFG Parsing 

Computational Linguistics

Alexander Koller

8 December 2017

## Today

- Parsing schemata and agenda-based parsing.
- Semiring parsing.
- Pruning techniques for chart parsing.



## CKY as parsing schema

- Makes claims about the string: Entering A into $\mathrm{Ch}(\mathrm{i}, \mathrm{k})$ means algorithm thinks $\mathrm{A} \Rightarrow^{*} \mathrm{w}_{\mathrm{i}} \ldots \mathrm{w}_{\mathrm{k}-1}$.
- Write this claim as item ( $\mathrm{A}, \mathrm{i}, \mathrm{k}$ ). This is like a logic formula that is true iff $\mathrm{A} \Rightarrow^{\star} \mathrm{w}_{\mathrm{i}} \ldots \mathrm{w}_{\mathrm{k}-1}$.
- Write parsing schema that shows how new items can be derived from old items.
- very general view; applies to algorithms beyond CKY
- supports generalized implementations


## CKY as parsing schema

- Parsing schema for CKY has a single rule:

$$
\frac{A \rightarrow B C}{}(B, i, j) \quad(C, j, k)
$$

- One benefit: can literally read off parsing complexity.
- rules have at most three independent variables for string positions ( $\mathrm{i}, \mathrm{j}, \mathrm{k}$ )
- therefore complexity is $\mathrm{O}\left(\mathrm{n}^{3}\right)$


## Implementing schemas

- Can generally implement parser for given schema in the following way:
- maintain an agenda: queue of items that we have discovered, but not yet attempted to combine with other items
- maintain a chart of all seen items for the sentence

```
initialize chart and agenda with all start items
while agenda not empty:
    item = dequeue(agenda)
    for each combination c of item with other item in the chart:
            if c not in chart:
                add c to chart
                enqueue c in agenda
if chart contains a goal item, claim w \in L(G)
```


## Implementing schemas

- Can generally implement parser for given schema in the following way:
- maintain an agenda: queue of items that we have discovered, but not yet attempted to combine with other items
- maintain a chart of all seen items for the sentence



## Example

agenda:
(PP, 5, 8) (V, 2, 3) (Det, 3, 4) (N, 4, 5)
chart:


## Example

agenda:
(PP, 5, 8) (V, 2, 3) (Det, 3, 4) (N, 4, 5) ( $\mathrm{N}, 4,8$ )
chart:


## Example

agenda:

$$
(\mathrm{V}, 2,3)(\mathrm{Det}, 3,4)(\mathrm{N}, 4,5)(\mathrm{N}, 4,8)
$$

chart:


## Example

agenda:
(Det, 3, 4) (N, 4, 5) (N, 4, 8)
chart:


## Example

agenda:
(Det, 3, 4) ( $\mathrm{N}, 4,5)(\mathrm{N}, 4,8)(\mathrm{NP}, 3,5)$
chart:


## Example

agenda:

$$
(\text { Det, } 3,4)(\mathrm{N}, 4,5)(\mathrm{N}, 4,8)(\mathrm{NP}, 3,5)
$$

## (NP, 3, 8)

chart:


## Example

agenda:

$$
(\mathrm{N}, 4,5) \quad(\mathrm{N}, 4,8) \quad(\mathrm{NP}, 3,5)
$$

## (NP, 3, 8)

chart:


## Example

agenda:
( $\mathrm{N}, 4,8$ ) ( $\mathrm{NP}, 3,5$ )
(NP, 3, 8)
chart:


## Example

agenda:
(NP, 3, 5)
(NP, 3, 8)
chart:


## Example

agenda:
(NP, 3, 5)
(NP, 3, 8) (VP, 2, 5)
chart:


## Example

agenda:

$$
(\mathrm{NP}, 3,8) \quad(\mathrm{VP}, 2,5)
$$

chart:

| $\stackrel{\infty}{\vdots}$ | 2... | 3... | 4... | 5... |
| :---: | :---: | :---: | :---: | :---: |
|  |  | NP | N | PP |
| $\stackrel{?}{\square}$ | VP | NP | N |  |
| + |  | Det |  |  |
| $\stackrel{?}{\square}$ | V |  |  |  |

## Example

agenda:

$$
(\mathrm{NP}, 3,8) \quad(\mathrm{VP}, 2,5) \quad(\mathrm{VP}, 2,8)
$$

chart:


## Example

agenda:

$$
(\mathrm{VP}, 2,5) \quad(\mathrm{VP}, 2,8)
$$

chart:


## Example

agenda:
(VP, 2, 8)
chart:

| $\stackrel{\infty}{\vdots}$ | 2... | 3... | 4... | 5... |
| :---: | :---: | :---: | :---: | :---: |
|  | VP | NP | N | PP |
| $\stackrel{?}{\square}$ | VP | NP | N |  |
| $\stackrel{+}{\vdots}$ |  | Det |  |  |
| ? | V |  |  |  |

## Example

agenda:
chart:


## Semiring parsing

- We have seen a number of algorithms on CKY charts that all look basically the same.
- decide word problem
- compute best parse
- compute inside probabilities
- compute number of parse trees
- What exactly do they have in common?

Can we use it to build better algorithms?

## CKY for recognition

for each i from 1 to n :
for each production rule $A \rightarrow w_{i}$ :
Ch(A, i, i+1) = true
for each width b from 2 to n :
for each start position i from 1 to $n-b+1$ :
for each left width $k$ from 1 to $b-1$ :
for each production rule $A \rightarrow B C$ :
Ch(A, i, i+b)
$=\operatorname{Ch}(A, i, i+b) v$
$(C h(B, i, i+k) \wedge C h(C, i+k, i+b) \wedge t r u e)$
return $\mathrm{Ch}(\mathrm{S}, 1, \mathrm{n}+1)$

## Viterbi-CKY

for each i from 1 to $n$ :
for each production rule $A \rightarrow w_{i}$ :
$\operatorname{Ch}(A, i, i+1)=P\left(A \rightarrow w_{i}\right)$
for each width b from 2 to n :
for each start position i from 1 to $n-b+1$ :
for each left width $k$ from 1 to $b-1$ :
for each production rule $A \rightarrow B C$ :
Ch(A, i, i+b)
$=\max (\operatorname{Ch}(A, i, i+b)$,

$$
C h(B, i, i+k) * C h(C, i+k, i+b) * P(A \rightarrow B C))
$$

return $\mathrm{Ch}(\mathrm{S}, 1, \mathrm{n}+1)$

## Inside

for each i from 1 to $n$ :
for each production rule $A \rightarrow W_{i}$ :
$\operatorname{Ch}(A, i, i+1)=P\left(A \rightarrow w_{i}\right)$
for each width $b$ from 2 to $n$ :
for each start position $i$ from 1 to $n-b+1$ :
for each left width $k$ from 1 to $b-1$ :
for each production rule $A \rightarrow B C$ :
Ch(A, i, i+b)
$=\operatorname{Ch}(A, i, i+b)+$ $(C h(B, i, i+k) * \operatorname{Ch}(C, i+k, i+b) * P(A \rightarrow B C))$
return $\mathrm{Ch}(\mathrm{S}, 1, \mathrm{n}+1)$

## Counting

for each $i$ from 1 to $n$ :
for each production rule $A \rightarrow W_{i}$ :
$\operatorname{Ch}(A, i, i+1)=1$
for each width $b$ from 2 to $n$ :
for each start position $i$ from 1 to $n-b+1$ :
for each left width $k$ from 1 to $b-1$ :
for each production rule $A \rightarrow B C$ :
Ch(A, i, i+b)
$=\operatorname{Ch}(A, i, i+b)+$ $(C h(B, i, i+k) * C h(C, i+k, i+b) * 1)$
return $\operatorname{Ch}(S, 1, n+1)$

## Semirings

- A semiring is a 5 -tuple consisting of
- a nonempty set V of values
- an addition $\oplus: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{V}$, associative and commutative
- a multiplication $\otimes: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{V}$, must be associative and distribute over $\oplus$
- an abstract zero $0 \in \mathrm{~V}$ such that $0 \oplus \mathrm{v}=\mathrm{v} \oplus 0=\mathrm{v}$ and $0 \otimes \mathrm{v}=\mathrm{v} \otimes 0=0$, for all v
- an abstract one $1 \in \mathrm{~V}$ such that $1 \otimes \mathrm{v}=\mathrm{v} \otimes 1=\mathrm{v}$, for all v

A semiring where $\oplus$ has inverse elements is called a ring

- really important in math, but not so much in this course.


## Some important semirings

|  | values | addition | multiplication | zero | one |
| :---: | :---: | :---: | :---: | :---: | :---: |
| counting | $\mathbf{N}_{0}$ | + | $*$ | 0 | 1 |
| boolean | $\{$ true, false $\}$ | $\vee$ | $\wedge$ | false | true |
| Viterbi | $[0,1]$ | $\max$ | $*$ | 0 | 1 |
| inside | $[0, \infty]$ | + | $*$ | 0 | 1 |

## Generic CKY with semirings

 assume evaluation function R : rules $\rightarrow \mathrm{V}$```
for each i from 1 to n:
    for each production rule A }->\mp@subsup{W}{i}{}\mathrm{ :
            Ch(A, i, i+1) = R(A -> wi )
```

for each width $b$ from 2 to $n$ :
for each start position $i$ from 1 to $n-b+1$ :
for each left width $k$ from 1 to $b-1$ :
for each production rule $A \rightarrow B C$ :
Ch(A, i, i+b)
$=\operatorname{Ch}(A, i, i+b) \oplus$
$(C h(B, i, i+k) \otimes C h(C, i+k, i+b) \otimes R(A \rightarrow B C))$
return $\mathrm{Ch}(\mathrm{S}, 1, \mathrm{n}+1)$

This generalizes all the variants we saw above.

## Semirings and agenda parsing

```
    for each start item I:
    enqueue I in agenda
    chart(I) = R(I)
while agenda not empty:
    item = dequeue(agenda)
    for each combination c of item with other item in the chart:
        if Chart(c) = 0:
        enqueue c in agenda
        chart(c) = chart(c) }\oplus\textrm{R}(\textrm{c}
return chart(goal item)
\[
\mathrm{R}(\mathrm{c})=\mathrm{R}(\text { rule }) \otimes \operatorname{chart}\left(\text { premise }_{1}\right) \otimes \ldots \otimes \operatorname{chart}\left(\text { premise }_{\mathrm{n}}\right)
\]
```


## Some further details

- Can define top-down variant to compute outside.
- Works best for charts without cycles.
- cycles appear when grammar has unary rules $\mathrm{A} \rightarrow \mathrm{B}$
- but can be made to work for charts with cycles under certain circumstances, see Goodman paper


## Pruning techniques

- If grammar is big and sentence is not short, computing the full chart is expensive.
- runtime of CKY is $\mathrm{O}\left(|\mathrm{G}|^{*} \mathrm{n}^{3}\right)$
- for treebank grammars, almost every substring can be derived from some nonterminal
- Most chart entries not used to build best parse tree.
- Pruning: avoid computing the full chart
- beam search: limit number of entries per chart cell
- best-first search: manipulate order in which items are taken from the agenda


## Inside and outside probs



- For each individual parse tree, the product of inside and outside probabilities is same at every node.
- If we could calculate (inside * outside) for each chart item, then we could focus search on just the items that are needed for best parse.


## Figures of Merit

- Challenge in bottom-up parsing:
- We can easily compute (Viterbi) inside of each item. $($ Viterbi inside $=\max \mathrm{P}(\mathrm{t})$; inside $=\Sigma \mathrm{P}(\mathrm{t})$.
- We cannot easily compute (Viterbi) outside, because we haven't combined item with other words yet.
- Idea: estimate (inside * outside) with a figure of merit (FOM) of the parse item.
- $\mathrm{FOM}=$ Viterbi inside prob: underestimates quality of long substrings
- $\mathrm{FOM}=(\text { Viterbi inside })^{1 / \mid \text { substring } \mid}$ : works okay in practice, but still ignores outside probs


## Beam search

- In CKY parsing, easiest way of using FOMs is beam search:
- fix a number $k$ of nonterminals that can be stored in each chart cell
- only retain the k nonterminals with the best FOM
- variant: only retain the nonterminals whose FOM is at least $\theta{ }^{*} \mathrm{f}$, where f is FOM of best nonterminal in same cell
- Beam search very standard technique in parsing and machine translation (including decoding of neural network outputs).


## Best-first parsing

- Idea: Agenda contains parse items (A, i, k); order them in descending order of their FOMs.
- If FOM were perfect, then first discovered goal item represents the best parse, and many unexplored items still on agenda $\Rightarrow$ faster parser.
- If FOM is not perfect, parser can make search errors: first discovered goal item is not optimal.
- can still be much faster than exhaustive parsing
- accuracy depends on quality of FOM


## A* parsing

- $\mathrm{A}^{*}$ search: general method for heuristic search in AI
- $\operatorname{FOM} \mathrm{h}=($ distance f from start $)+($ estimated distance g to goal $)$
- g must underestimate distance, i.e. never be larger than true distance
- guarantees that first path to goal we find is optimal
- Apply this to parsing (Klein \& Manning 03):
- $\mathrm{f}=-\log$ inside
- $\mathrm{g}=$ estimate of $-\log$ outside


## Outside estimates

| Estimate | SX | SXL | SXLR | TRUE |
| :---: | :---: | :---: | :---: | :---: |
| Summary | (1,6,NP) | (1,6,NP,VBZ) | (1,6,NP,VBZ,",") | (entire context) |
| Best Tree |  |  |  |  |
| Score | -11.3 | -13.9 | -15.1 | -18.1 |
| (a) (b) |  |  | (c) | (d) |

- Represent each parse item with a summary, which abstracts over the concrete sentence we are parsing.
- Compute outside estimates for each possible summary from grammar, before we start parsing actual sentences.


## A* parsing: Results

| Estimate | Savings | w/ Filter | Storage | Precomp |
| :---: | :---: | :---: | :---: | :---: |
| NULL | 11.2 | 58.3 | 0 K | none |
| S | 40.5 | 77.8 | 2.5 K | 1 min |
| SX | 80.3 | 95.3 | 5 M | 1 min |
| SXL | 83.5 | 96.1 | 250 M | 30 min |
| S XLR | 93.5 | 96.5 | 500 M | 480 min |
| SXR | 93.8 | 96.9 | 250 M | 30 min |
| SXMLR | 94.3 | 97.1 | 500 M | 60 min |
| B | 94.6 | 97.3 | 1 G | 540 min |

## Coarse-to-fine parsing

- Idea: make coarser-grained grammar by combining "similar" nonterminals into one (Charniak et al. 06).
- combine S, VP, S-bar, etc. into "S_"
- combine S_ and N_into "HP" (head phrase); etc.
- Compute complete parse chart with coarse-grained grammar; calculate exact inside and outside.
- Prune out entries with low inside * outside. Refine the others, then repeat until we have chart of original grammar.


## CTF parsing: Results

| Level | Constits <br> Produced | Constits <br> Pruned | \% Pruned |
| :---: | :---: | :---: | :---: |
|  | $* 10^{6}$ | $* 10^{6}$ |  |
| 0 | 8.82 | 7.55 | 86.5 |
| 1 | 9.18 | 6.51 | 70.8 |
| 2 | 11.2 | 9.48 | 84.4 |
| 3 | 11,8 | 0 | 0.0 |
| total | 40.4 | - | - |
| 3-only | 392.0 | 0 | 0 |


| Level | Time for Level | Running Total |
| :---: | :---: | :---: |
| 0 | 1598 | 1598 |
| 1 | 2570 | 4168 |
| 2 | 4303 | 8471 |
| 3 | 1527 | 9998 |
| 3-only | 114654 | - |

Figure 5: Total constituents pruned at all levels for WSJ section 23, sentences of length $\leq 100$

## Summary

- PCFG parsing one of the most successful fields of NLP research.
- Current parsers are fast and quite accurate.
- in practice, most people use Berkeley or Stanford parser for good speed-accuracy-convenience tradeoff
- Techniques from PCFG parsing carry over to many other problems in computational linguistics.

