Advanced PCFG Parsing

Computational Linguistics

Alexander Koller

8 December 2017

Today

e Parsing schemata and agenda-based parsing.
e Semiring parsing.

e Pruning techniques for chart parsing.

The CKY Algorithm

Chart j

VP NP N PP

E)
o
~
U1
... In my pyj amas\\

= In my pyjamas
av]
<

VP NP N o
L

o elephant
Det w CKY computes claims
— about string
v £

Cell at column 1, row k:

shot {A|A=>*Wi...Wk-1}

CKY as parsing schema ﬁ
-3

“:S%liel;é‘:r :

o Makes claims about the string: Entering A into
Ch(i,k) means algorithm thinks A =* w; ... wi.1.

e Write this claim as item (A, i, k). This is like a logic
formula that is true ift A =* w; ... wi1.

o Write parsing schema that shows how new items
can be derived from old items.

» very general view; applies to algorithms beyond CKY

» supports generalized implementations

CKY as parsing schema

e Parsing schema for CKY has a single rule:

A>BC (Bij) (Gjk)
(A, 1, k)

e One benefit: can literally read off parsing complexity.

» rules have at most three independent variables for string
positions (i, j, k)

» therefore complexity is O(n?3)

Implementing schemas

e Can generally implement parser for given schema in
the following way:

» maintain an agenda: queue of items that we have discovered,
but not yet attempted to combine with other items

» maintain a chart of all seen items for the sentence

|
initialize chart and agenda with all start items rules Ofparsingj
e

schema used her
B

while agenda not empty:
1tem = dequeue(agenda)
for each combination c of item with other item in the chart:
1f ¢ not in chart:
add ¢ to chart
enqueue C 1nh agenda

1f chart contains a goal item, claim w € L(G)

Implementing schemas

e Can generally implement parser for given schema in
the following way:

» maintain an agenda: queue of items that we have discovered,
but not yet attempted to combine with other items

» maintain a chart of all seen items for the sentence

|
initialize chart and agenda with all start items rules Ofparsingj
e

schema used her

T

while agenda not empty:
1tem = dequeue(agenda)
for each combination c of item with other item in the chart:
1f ¢ not in chart:

add ¢ to chart - tial to d

enqueue C in agenda essential to do
this efhiciently

T

1f chart contains a goal item, claim w € L(G)

Example

agenda:

(PR, 5,8) (V,2,3) (Det, 3,4) (N, 4,5)

chart:

2 3 4... 5
= PP
a N
=, Det
. Vv

Example

agenda:

(PR, 5,8) (V,2,3) (Det,3,4) (N,4,5) (N,4,8)

chart:

2 3 4... 5
= N PP
" N
=, Det
. Vv

Example

agenda:
(\/) 2) 3) (Det) 3) 4) (N) 4) 5) (N) 4) 8)
chart:
2... 3 4... 5
* N PP
i N
=, Det

Example

agenda:
(Det, 3,4) (N, 4,5) (N,4,8)
chart:
2... 3... 4... 5
* N PP
m N
=, Det

Example

agenda:
(Det, 3,4) (N,4,5) (N,4,8) (NP,3,5)
chart:
2... 3 4... 5
* N PP
i NP N
=, Det

Example

agenda:
(Det, 3,4) (N,4,5) (N,4,8) (NP,3,5)
(NP, 3, 8)
chart:
2... 3 4... 5
* NP N PP
i NP N
=, Det
o \

Example

agenda:
(N,4,5) (N,4,8) (NP, 3,5)
(NP, 3, 8)
chart:
2... 3... 4... 5
* NP N PP
i NP N
=, Det
o \

Example

agenda:
(N, 4,8) (NP, 3,5)
(NP, 3, 8)
chart:
2... 3... 4... 5
* NP N PP
i NP N
=, Det
o \

Example

agenda:
(NP, 3,5)
(NP, 3, 8)
chart:
2... 3... 4... 5
* NP N PP
i NP N
=, Det
o \

agenda:

Example

(NP, 3,8) (VP,2,5)

(NP, 3, 5)

chart:
2. 3 4... 5
= NP N PP
a VP NP N
=, Det
. Vv

agenda:

Example

(NP, 3,8) (VP,2,5)

chart:
2. 3 4... 5
= NP N PP
a VP NP N
=, Det
. Vv

agenda:

Example

(NP, 3,8) (VB 2,5) (VP 2,8)

chart:

2. 3... 4... 5
= VP NP N PP
a VP NP N
=, Det

Example

agenda:
(VP,2,5) (VP,2,8)
chart:
2 3 4... 5
% VP NP N PP
i VP NP N
=, Det
o \

Example

agenda:
(VP, 2, 8)
chart:
2 3 4... 5
% VP NP N PP
i VP NP N
=, Det
o \

Example

agenda:
chart:
2... 3... 4... 5
% VP NP N PP
i VP NP N
=, Det
o \

Semiring parsing

e We have seen a number of algorithms on CKY
charts that all look basically the same.

» decide word problem
» compute best parse
» compute inside probabilities

» compute number of parse trees

e What exactly do they have in common?
Can we use it to build better algorithms?

CKY for recognition

for each 1 from 1 to n:
for each production rule A » wi:
ChCA, 1, 1+1) = true

for each width b from 2 to n:
for each start position 1 from 1 to n-b+1:
for each left width k from 1 to b-1:
for each production rule A » B C:
ChCA, 1, 1+b)
= ChCA, 1, 1+b) v
(Ch(B, 1, 1+k) A Ch(C, 1+k, 1+b) A true)

return Ch(S, 1, n+l)

Viterbi-CKY

for each 1 from 1 to n:
for each production rule A » wi:
ChCA, 1, 1+1) = PCA » wi)

for each width b from 2 to n:
for each start position 1 from 1 to n-b+1:
for each left width k from 1 to b-1:
for each production rule A » B C:
ChCA, 1, 1+b)
= max(ChCA, 1, 1+b),
Ch(B, 1, 1+k) * Ch(C, 1+k, 1+b) * PCA - B O))

return Ch(S, 1, n+l)

Inside

for each 1 from 1 to n:
for each production rule A » wi:
ChCA, 1, 1+1) = PCA » wi)

for each width b from 2 to n:
for each start position 1 from 1 to n-b+1:
for each left width k from 1 to b-1:
for each production rule A » B C:
ChCA, 1, 1+b)
= Ch(CA, 1, 1+b) +
(Ch(B, 1, 1+k) * Ch((C, 1+k, 1+b) * PCA - B O))

return Ch(S, 1, n+l)

Counting

for each 1 from 1 to n:
for each production rule A » wi:
ChCA, 1, 1+41) =1

for each width b from 2 to n:
for each start position 1 from 1 to n-b+1:
for each left width k from 1 to b-1:
for each production rule A » B C:
ChCA, 1, 1+b)
= Ch(CA, 1, 1+b) +
(Ch(B, 1, 1+k) * Ch((C, 1+k, 1+b) * 1)

return Ch(S, 1, n+l)

Semirings

o A semiring is a 5-tuple consisting of

4

4

4

a nonempty set V of values
an addition ® : V x V >V, associative and commutative

a multiplication ® : V X V >V, must be associative
and distribute over ®

an abstract zero0 € Vsuchthat 0 @ v=v®0=v
and0®v=v®0=0,forallv

an abstractonel e Vsuchthatl ® v=v® 1 =v, forall v

A semiring where ® has inverse elements is called a ring
— really important in math, but not so much in this course.

Some important semirings

values addition | multiplication Zero one
counting No + X 0 1
boolean {true, false} Y% A false true
Viterbi [0, 1] max * 0 1
inside [0, oo] + * 0 1

Generic CKY with semirings

assume evaluation function R: rules > V

for each 1 from 1 to n:
for each production rule A » wi:
ChCA, 1, 1+1) = RCA » wi)

for each width b from 2 to n:
for each start position 1 from 1 to n-b+1:
for each left width k from 1 to b-1:
for each production rule A » B C:
ChCA, 1, 1+b)
= Ch(A, 1, 1+b) @&
(Ch(B, 1, 1+k) ® Ch(C, 1+k, 1+b) ® RCA » B O))

return Ch(S, 1, n+l)

This generalizes all the variants we saw above.

Semirings and agenda parsing

for each start item I:
enqueue I 1n agenda
chart(I) = R(I)

while agenda not empty:
1tem = dequeue(agenda)
for each combination c of item with other item in the chart:
1f Chart(c) = 0:
enqueue C 1n agenda
chart(c) = chart(c) ® R(c)

return chart(goal item)

l R(c) = R(rule) ® chart(premise;) ® ... ® chart(premise,) '

Some further details

e (Can define top-down variant to compute outside.

o Works best for charts without cycles.

» cycles appear when grammar has unary rules A > B

» but can be made to work for charts with cycles under
certain circumstances, see Goodman paper

Pruning techniques

If grammar is big and sentence is not short,
computing the full chart is expensive.

» runtime of CKY is O(|G| * n3)

» for treebank grammars, almost every substring can be
derived from some nonterminal

Most chart entries not used to build best parse tree.

Pruning: avoid computing the full chart

» beam search: limit number of entries per chart cell

» best-first search: manipulate order in which items are taken
from the agenda

Inside and outside probs

inside: 0.4
outside: 0.15

inside: 0.06
outside: 1

7

—

— ‘0.4

John

P
NP VP

inside: 0.5

‘ 0.5
outside: 0.12

sleeps

» For each individual parse tree, the product of inside and outside
probabilities is same at every node.

» If we could calculate (inside * outside) for each chart item, then we
could focus search on just the items that are needed for best parse.

Figures of Merit

e Challenge in bottom-up parsing:

» We can easily compute (Viterbi) inside of each item.
(Viterbi inside = max P(t); inside = X P(t).)

» We cannot easily compute (Viterbi) outside, because we
haven't combined item with other words yet.

o Idea: estimate (inside * outside) with a figure of
merit (FOM) of the parse item.

» FOM = Viterbi inside prob:
underestimates quality of long substrings

» FOM = (Viterbi inside)!/ [substring| .
works okay in practice, but still ignores outside probs

Beam search

e In CKY parsing, easiest way of using FOMs is
beam search:

» fix a number k of nonterminals that can be stored in each
chart cell

» only retain the k nonterminals with the best FOM

» variant: only retain the nonterminals whose FOM is at least
0 * f, where f is FOM of best nonterminal in same cell

e Beam search very standard technique in parsing
and machine translation (including decoding of
neural network outputs).

Best-first parsing

o Idea: Agenda contains parse items (A, i, k);
order them in descending order of their FOMs.

o If FOM were perfect, then first discovered goal item
represents the best parse, and many unexplored items

still on agenda = faster parser.

e If FOM is not perfect, parser can make search errors:
first discovered goal item is not optimal.

» can still be much faster than exhaustive parsing

» accuracy depends on quality of FOM

A* parsing

e A*search: general method for heuristic search in Al

» FOM h = (distance f from start) + (estimated distance g to goal)

» g must underestimate distance, i.e. never be larger than true
distance

» guarantees that first path to goal we find is optimal

e Apply this to parsing (Klein & Manning 03):
» f=-loginside

» g = estimate of - log outside

Outside estimates

Estimate SX SXL SXLR TRUE
Summary (1,6,NP) (1,6, NP,VBZ) (1,6, NP,VBZ.,’,)) (entire context)
S S
s VP VP —— > -
Best Tree /I\,IP\ vbz P /PP\ Vb ,/I\EP\ V‘P PI‘QP VBZ/\
PART o D\T Nl\\IP NI\\IP D\T J\J N\N V]‘32 N‘P , PRP VBZ DT NN .
VBZ NP ?7 ? ? ? VBZ NP , ? 2 2 2 7
Score -11.3 -13.9 -15.1 -18.1
(a) (b) (c) (d)

» Represent each parse item with a summary, which abstracts over the
concrete sentence we are parsing.

» Compute outside estimates for each possible summary from grammar,
before we start parsing actual sentences.

A* parsing: Results

Estimate | Savings | w/ Filter | Storage | Precomp
NULL 11.2 58.3 OK none
S 40.5 77.8 2.5K 1 min
SX 80.3 95.3 SM 1 min
SXL 83.5 96.1 250M 30 min
S1XLR 93.5 96.5 S00M 480 min
SXR 93.8 96.9 250M 30 min
SXMLR 94 .3 97.1 S00M 60 min
B 94.6 97.3 1G 540 min

Coarse-to-fine parsing

o Idea: make coarser-grained grammar by combining
“similar” nonterminals into one (Charniak et al. 06).

» combine S, VP, S-bar, etc. into “S_”

» combine S_ and N_ into “HP” (head phrase); etc.

e Compute complete parse chart with coarse-grained
grammar; calculate exact inside and outside.

e Prune out entries with low inside * outside.
Refine the others, then repeat until we have chart of
original grammar.

CTF parsing: Results

Level Constits Constits % Pruned Level Time for Level Running Total

Produced Pruned 0 1598 1598
%100 %100 1 2570 4168
0 8.82 7.55 86.5 2 4303 8471
1 9.18 6.51 70.8 3 1527 9998
2 11.2 9.48 84.4 3-only 114654
3 11,8 0 0.0 - 6 Runming (i . . —_—
fotal - 404 - ; tion 25, with s withent praning
3-only 392.0 0 0 ’

Figure 5: Total constituents pruned at all levels
for WSJ section 23, sentences of length < 100

... at no loss in f-score with their grammar.

Summary

PCFG parsing one of the most successful fields of
NLP research.

Current parsers are fast and quite accurate.

» in practice, most people use Berkeley or Stanford parser
for good speed-accuracy-convenience tradeoft

Techniques from PCFG parsing carry over to many
other problems in computational linguistics.

