Probabilistic
Context-free Grammars

Computational Linguistics

Alexander Koller

24 November 2017

The CKY Recognizer

S> NP VP V > ate Det > a
NP > Det N NP - John N - sandwich
VP >V NP

... sandwich

< sandwich

— Det
o 4d
“© vV |7
S ate : .
5 NP i Cell at column 1, row k:

4 : {A|A=Wi... W1 }
John

The CKY Recognizer

S> NP VP V > ate Det > a
NP > Det N NP - John N - sandwich
VP >V NP

5
S
-~ s | vp | NP N g
YT
. / De/t & sandwich
[4 8 a
) I\;P % ate Cell at column i, row k:
4 H {A|A=Wi... W1 }

John

Recognizer to Parser

Parser: need to construct parse trees from chart.

Do this by memorizing how each A € Ch(j,k) can
be constructed from smaller parts.

» built from B € Ch(i,j) and C € Ch(j,k) using A > B C:
store (B,C,j) in backpointer for A in Ch(i,k).

» analogous to backpointers in HMM:s

Once chart has been filled, enumerate trees
recursively by following backpointers,
starting at S € Ch(1,n+1).

Let’s play a game

e Given a nonterminal symbol, expand it.

e You can take one of two moves:

» expand nonterminal into a sequence of other nontermianls
» use nonterminals S, NP, VP, PP, ... or POS tags

» expand nonterminal into a word

Penn Treebank POS tags

Tag Description Example Tag Description Example
CC Coordin. Conjunction and, but, or SYM Symbol +,%, &
CD Cardinal number one, two, three || TO “to” {o

DT Determiner a, the UH Interjection ah, oops
EX Existential ‘there’ there VB Verb, base form eat

FW Foreign word mea culpa VBD Verb, past tense ate

IN Preposition/sub-conj 0f, in, by VBG Verb, gerund eating

JJ Adjective yvellow VBN Verb, past participle eaten

JJR Adj., comparative bigger VBP Verb, non-3sg pres eat

JIS Adj., superlative wildest VBZ Verb, 3sg pres eats

LS List item marker 1, 2, One WDT Wh-determiner which, that
MD Modal can, should WP Wh-pronoun what, who
NN Noun, sing. or mass [lama WP$ Possessive wh- whose
NNS Noun, plural llamas WRB Wh-adverb how, where
NNP Proper noun, singular /BM $ Dollar sign $

NNPS Proper noun, plural Carolinas # Pound sign #

PDT Predeterminer all, both “ Left quote (‘or*)
POS Possessive ending s 7 Right quote Cor”)

PP Personal pronoun I, you, he (Left parenthesis (LG{ <
PP$ Possessive pronoun your, one’s) Right parenthesis (1,), }, >)
RB Adverb quickly, never ||, Comma ,

RBR Adverb, comparative faster Sentence-final punc (. ! 7)
RBS Adverb, superlative fastest Mid-sentence punc (: ;... —-)
RP Particle up, off

Some real trees

S
/
NP-SBJ VP .
e = T |
NP . ADJP , MD VP .
N
NNP NNP , NP J o, wil VB NP PP-CLR NP-TMP
| | N | N 7 T /N
Pierre Vinken CD NNS od join DT NN IN NP NNP CD
| I N B |
61 years the board as DT JJ NN Nov. 29
| \ |
Penn Treebank, #0001 a nonexecutive director
S
NP-SBJ-1 VP
/\
NP , U>:P , VBD VP
— — T
NNP NNP l ADJP cC NP | st VBN S
N _— T
Rudolph Agnew NP JJ and NP PP named NP-SBJ NP-PRD
/\ //\
CD NNS od J NN IN NP -NOLE- NP PP
| \ | | 7 N I —] T
55 years former chairman of NNP NNP NNP NNP *1 DT JJ NN IN NP
N T
Consolidated Gold He}ds PL\C ela nonextlacutive dire\ctor <lf DT JJ JJ NN
Penn Tl'eebank, #0002 thlis Britlish indu!stn'a] cnnglolmerate

nltk.corpus.treebank.parsed_sents("wsj_0001.mrg")[@].draw()

Ambiguity

Need to disambiguate: find “correct” parse tree for ambiguous sentence.

NP/ S\ Det/\N
. / \

D(\N PRé\ PRm
| | |
I shot an elepLant in my pYj amas I shot an elephant in my pyjamas

How do we identify the “correct” tree?
How do we compute it efficiently? (Remember: exponential number of readings.)

Probabilistic CFGs

o A probabilistic context-free grammar (PCFG)
is a context-free grammar in which

» each production rule A > w has a probability P(A > w | A):
when we expand A, how likely is it that we choose A > w?

» for each nonterminal A, probabilities must sum to one:

Y PA—w]|A)=1

» we will write P(A > w) instead of P(A > w | A) for short

An example

S> NP VP
NP - Det N
NP > 1

N> N PP

N > elephant
N - pyjamas

1.0
0.8
0.2
0.4

0.3

[0.3]

VP > V NP
VP > VP PP
V - shot
PP > P NP
P - In
Det - an
Det > my

0.5
0.5
1.0
1.0
1.0
0.5
0.5

(let’s pretend for simplicity that Det = PRP$)

Generative process

e PCFG generates random derivations of CFG.

» each event (expand nonterminal by production rule)
statistically independent of all the others

1.0 0.2 | 0.5
S=NP VP =iVP =iVPPP
0.00072

= 1 shot an elephant in my pyjamas

1.0 0.2 0.4
S=NPVP =iVP =*iV DetN -
=iV Det NPP =*ishot ... pyjamas

Parse trees

P(t;) = 0.00072 P(t,) = 0.00057
S
NP/ \VP
S 0.2 0.5 .
NP/ \'P | A.S\

Det
0.2 O'Np
VP/ P 0.5 AA\
N PP

P P
P NP
: 0.8
Dm D{\N Dm
0.5] 0.3 | 0.5 10.3 105l 10.3
| shot an elephant in my pyjamas I shot an elephant in ~““my pyjamas

T

“correct” = more probable parse tree

Language modeling

o As with other generative models (HMMs!), can
define probability P(w) of string by marginalizing
over its possible parses:

Plw)= » P(t)

tEparses(w)

e Can compute this efliciently with
inside probabilities, see next time.

Disambiguation

e Assumption: “correct” parse tree = the parse tree
that had highest prob of being generated by random

process, i.e. argmax P(t)
tEparses(w)

e We use a variant of the Viterbi algorithm to
compute it.

e Here, Viterbi based on CKY: can do it with other
parsing algorithms too.

The intuition

Ordinary CKY parse chart: Ch(i,k) = {A | A =* wi ... Wi}

... In my pyjamas

VP NP N PP
¥ Inmy pyjamas
VP NP N |5
Det §: elephant
2 an
V =

shot

Viterbi CKY parse chart: Ch(i, k) = {(4,p) | p =

The intuition

1mMax
d:A=*w;... Wk _1

P(d);

... In my pyjamas

shot

VP: 0.0036 | NP: 0.006 | N:0.014 PP: 0.12
¥ Inmy pyjamas
VP:0.06 | NP:0.12 | N:03 |[%
Det: 0.5 |5 7
45 an
V: 1.0 ﬁ

Viterbi CKY

e Define for each span (i,k) and each nonterminal A
the probability

V(A i, k) = max P(d)

d
A=*w;... we_1

e Compute V iteratively “inside out’, i.e. starting from
small spans and working our way up to longer spans.

V(A,i,1+1) = P(A — w,;)

V(A,i,k) = max P(A— BC(C)-V(B,t,7)-V(C,j,k)
A—B C
1<g<k

Viterbi CKY - pseudocode

set all V[A,1,]] to 0

for all 1 from 1 to n:
for all A with rule A -> w;:
add A to Ch(i,1+1)
VIA,1,1+1] = PCA -> wi)

for all b from 2 to n:
for all 1 from 1 to n-b+1:
for all k from 1 to b-1:
for all B 1n Ch(i,1+k) and C i1n Ch(i+k,1+b):
for all production rules A -> B C:

add A to Ch(i,1+b)

if PCA -> B O * V[B,1,1+k] * V[(C,1+k,1+b] > V[A,1,1+b]:

V[A,1,1+b] = PCA -> B C) * V[B,1,1+k] * V[(C,1+k,1+b]

Viterbi-CKY in action

Viterbi CKY parse chart: Ch(i, k) = {(4,p) | p = . max P(d)}

A=* w;... w1

... In my pyjamas

¥ Inmy pyjamas
2
o
L
o
= elephant

9]

an

... shot

shot

Viterbi-CKY in action

Viterbi CKY parse chart: Ch(i, k) = {(4,p) [p =

max
A=* w;... w1

P(d);

PP: 0.12

... In my pyjamas

N:0.3

Det: 0.5

V: 1.0

shot

... shot

an

= elephant

9]

... elephant

In my pyjamas

Viterbi-CKY in action

Viterbi CKY parse chart: Ch(i, k) = {(4,p) [p =

max
A=* w;... w1

P(d);

PP: 0.12

... In my pyjamas

shot

... shot

NP: 0.12 N: 0.3
= elephant
Det: 0.5 |©
an
V: 1.0

... elephant

In my pyjamas

Viterbi-CKY in action

Viterbi CKY parse chart: Ch(i, k) = {(4,p) [p =

max
A=* w;... w1

P(d);

... In my pyjamas

shot

... shot

N:0.014 PP:0.12
¥ Inmy pyjamas
NP:0.12 | N:03 |%
= elephant
Det: 0.5 |°
an
V: 1.0

Viterbi-CKY in action

Viterbi CKY parse chart: Ch(i, k) = {(4,p) | p = . max P(d)}

A=* w;... w1

%
>
N:0.014 PP: 0.12 g
5
¥ Inmy pyjamas
VP:0.06 | NP:0.12 | N:03 |&
= elephant

Det: 0.5 |°

an

V: 1.0

... shot

shot

Viterbi-CKY in action

Viterbi CKY parse chart: Ch(i, k) = {(4,p) | p = . max P(d)}

A=* w;... w1

=
>
NP:0.0058 | N:0.014 PP: 0.12 %
5
¥ Inmy pyjamas
VP:0.06 | NP:0.12 | N:03 |&
= elephant

Det: 0.5 |°

an

V: 1.0

... shot

shot

Viterbi-CKY in action

Viterbi CKY parse chart: Ch(i, k) = {(4,p) | p = . max P(d)}

A=* w;... w1

VP:0.0029 |[NP: 0.0058 [N:0.014 PP: 0.12

\—

... In my pyjamas

¥ Inmy pyjamas
VP:0.06 ||NP:0.12 | N:03 |%
= elephant
Det: 0.5 |°
/ e an
V:1.0 |5

shot

Viterbi-CKY in action

Viterbi CKY parse chart: Ch(i, k) = {(4,p) | p = . max P(d)}

A=* w;... w1

V1-0:6029- [NP: 0.0058 | N:0.014 PP: 0.12

——

... In my pyjamas

/ & inmy pyjamas
VP:0.06 ||NP:0.12 | N:03 |%
= elephant
Det: 0.5 |°
/ e an
V:1.0 |5

shot

Remarks

e Viterbi CKY has exactly the same nested loops
as the ordinary CKY parser.

4

computing V in addition to Ch only changes constant factor

» thus asymptotic runtime remains O(n?3)

e Compute optimal parse by storing backpointers.

4

4

same backpointers as in ordinary CKY

sufficient to store the best backpointer for each (A,i,k)
if we only care about best parse (and not all parses),
i.e. actually uses less memory than ordinary CKY

Obtaining the PCFG

e How to obtain the CFG?

» write by hand

» derive from treebank

» grammar induction from raw text

e How to obtain the rule probabilities once we have
the CFG?

» maximum likelihood estimation from treebank

» EM training from raw text (inside-outside algorithm)

The Penn Treebank

Large (in the mid-90s) quantity of text,
annotated with POS tags and syntactic structures.

Consists of several sub-corpora:

» Wall Street Journal: 1 year of news text, 1 million words
» Brown corpus: balanced corpus, 1 million words

» ATIS: dialogues on flight bookings, 5000 words

» Switchboard: spoken dialogue, 3 million words

WSJ PTB is standard corpus for training and
evaluating PCFG parsers.

Annotation format

S

—

N\

VP

\
ADJP-PRD

\PP

NP-SBJ NP
PEARNN AN
: NN VBZ JJ] IN NN CC NN .

\ \ | \ e A T
That cold , empty sky was full of fire and light .

Annotation format

(S
S
N
NP-SBJ
SN C
DT JJ J] NN Vbz

(NP-SBJ (DT That)

() cold) (, ,)
(JJ empty) (NN sky))

(VP (VBD was)

(ADJP-PRD (JJ full)
(PP (IN of)
(NP (NN fire)
(CC and)
(NN light)))))
D))

b/

J)

ITN ININ - CCTTININ .

That cold , empty sky was full of fire and light .

Reading off grammar

e Can directly read off “grammar in annotators’
heads” from trees in treebank.

o Yields very large CFG, e.g. 4500 rules for VP:
VP > VBD PP
VP > VBD PP PP
VP > VBD PP PP PP
VP > VBD PP PP PP PP
VP > VBD ADVP PP
VP > VBD PP ADVP

VP > VBD PP PP PP PP PP ADVP PP

Reading off grammar

e Can directly read off “grammar in annotators’
heads” from trees in treebank.

o Yields very large CFG, e.g. 4500 rules for VP:

VP > VBD PP

“This mostly happens because we go
VP> VBD PP PY (i football in the fall to lifting in the winter
VP > VBD PP Pl

to football again in the spring.”
VP > VBD PP Plor—r=x

VP > VBD ADVP PP
VP > VBD PP ADVP

VP > VBD PP PP PP PP PP ADVP PP

Evaluation

e Step 1: Decide on training and test corpus.
For WS]J corpus, there is a conventional split by sections:

2-21 22

Training Devel Test

Evaluation

Step 2: How should we measure the accuracy of the
parser?

Straightforward idea: Measure “exact match’, i.e.
proportion of gold standard trees that parser got right.

This is too strict:
» parser makes many decisions in parsing a sentence
» a single incorrect parsing decision makes tree “wrong”

» want more fine-grained measure

Comparing parse trees

o Idea 2 (PARSEVAL): Compare structure of parse
tree and gold standard tree.

» Labeled: Which constituents (span + syntactic category) of
one tree also occur in the other?

» Unlabeled: How do the trees bracket the substrings of the
sentence (ignoring syntactic categories)?

Gold

/\VP

NP SB] AD]P

CC DT NN VBZ H

But the concept is worLable

Parse

S
I
< | R

/ NP NP-SB] | ADJP

IN DT NN VBZ Jj

But the concept is workable

Precision

What proportion of constituents in parse tree is also present in gold tree?

Gold SY Parse

/ 7 x [v
RN,

NP SBI AD]P / P-SB] | ADJP
4 | v |
CC DT NN VBZ II N pr’ nNYvBZ JpY
BLt t}le conl:ept is‘ WorLable BLt t}le con‘cept is‘ WorLable

Labeled Precision=7/11 = 63.6%
Unlabeled Precision=10/11 =90.9%

Recall

What proportion of constituents in gold tree is also present in parse tree?

Gold Sv

/\VP‘/

NP SBI AD]P

4
(C)C DT I{ VBZ H

But the concept is WorLable

Labeled Recall=7/9=77.8%

Unlabeled Recall =8 /9 = 88.9%

/

PP

\ |
/ NP NP-SB] | ADJP

\

IN DT NN VBZ Jj

But the concept is WorLable

F-Score

Precision and recall measure opposing qualities of
a parser (“soundness” and “completeness”)

Summarize both together in the f-score:

2.P-R
o —
" PLR

In the example, we have labeled f-score 70.0
and unlabeled f-score 89.9.

Summary

e PCFGs extend CFGs with rule probabilities.

» Events of random process are nonterminal expansion
steps. These are all statistically independent.

» Use Viterbi CKY parser to find most probable parse tree for
a sentence in cubic time.

e Read grammars off treebanks.

» next time: learn rule probabilities

e Evaluation of statistical parsers.

