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Example HMM: Eisner’s Ice Cream
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States represent weather on a given day: Hot, Cold  
Outputs represent number of ice creams Jason eats that day

Eisner

emission p. 
bC(2)

initial p. 
a0H

transition p. 
aCH



Viterbi Algorithm: Example
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Vt(j) =
N

max

i=1
Vt�1(i) · aij · bj(yt)V

t

(j) = max

x1,...,xt�1

P (y1, . . . , yt, x1, . . . , xt�1, Xt

= q

j

)

V1(H) = .32

V1(C) = .02

V2(H) = .045

V2(C) = .048

V3(H) = .012

V3(C) = .003

max

x1,x2,x3

P (x1, 3, x2, 1, x3, 3)

= 0.012

argmax

x1,x2,x3

P (x1, 3, x2, 1, x3, 3)

= H,H,H



The Forward Algorithm

• Key idea: Forward probability αt(j) that HMM 
outputs y1, …, yt and then ends in Xt = qj. 

• From this, can compute easily

↵

t

(j) = P (y1, . . . , yt, Xt

= q

j

)

=
X

x1,...,xt�1

P (y1, . . . , yt, X1 = x1, . . . , Xt�1 = x

t�1, Xt

= q

j

)

P (y1, . . . , yT ) =
X

q2Q

↵T (q)



The Forward Algorithm

• Base case, t = 1:  
 

• Inductive case, compute for t = 2, …, T:

↵t(j) = P (y1, . . . , yt, Xt = qj)

↵1(j) = P (y1, X1 = qj) = bj(y1) · a0j

↵t(j) = P (y1, . . . , yt, Xt = qj)

=
NX

i=1

P (y1, . . . , yt�1, Xt�1 = qi) · P (Xt = qj | Xt�1 = qi) · P (yt | Xt = qj)

=
NX

i=1

↵t�1(i) · aij · bj(yt) ↵t�1(1)

↵t�1(2)

↵t�1(3)

q1

q2

q3

qj

yt

a1j

a2j

a3j bj(yt)



Question 3a: Supervised learning

• Given a set of POS tags and annotated training data 
(w1,t1), …, (wT,tT), compute parameters for HMM 
that maximize likelihood of training data.

The  representative  put  chairs  on  the  table.
DT NN VBD NNS IN

Secretariat  is  expected  to  race  tomorrow.

DT NN

NNP VBZ VBN TO VB NR



Maximum likelihood training

• Estimate bigram model for state sequence: 

• ML estimate for emission probabilities: 

• Apply smoothing as you would for ordinary 
n-gram models (increase all counts C by one).

aij =
C(Xt = qi, Xt+1 = qj)

C(Xt = qi)
a0j =

# sentences with X1 = qj
# sentences

bi(o) =
C(Xt = qi, Yt = o)

C(Xt = qi)



Evaluation

• How do you know how well your tagger works? 

• Run it on test data and evaluate accuracy. 
‣ Test data: Really important to evaluate on unseen sentences 

to get a fair picture of how well tagger generalizes. 

‣ Accuracy: Measure percentage of correctly predicted 
POS tags.



Evaluation on test data
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Question 3b: Unsupervised learning

• Given a set of POS tags and unannotated training 
data w1, …, wT, compute parameters for HMM that 
maximize likelihood of training data. 

• Useful because annotated data is expensive  
to obtain, but raw text is really cheap.

The  representative  put  chairs  on  the  table.

Secretariat is expected to race today.



The setup
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The setup

H

C

1
2
3

1
2
3

Given: HMM
without probs!



The setup
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Given: HMM
without probs!

Observations: 2, 3, 3, 2, 3, 2, 3, 2, 2, 3, 1, 3, 3, …



The setup

• If we had counts of state transitions in corpus, we 
could simply use ML estimation. 

• Idea: replace actual counts by estimated counts. 

• How can we estimate counts?

aij =
C(qi ! qj)

C(qi ! •)

aij ⇡
Ĉ(qi ! qj)

Ĉ(qi ! •)



Estimated counts

Observations y 3 1 3

Hidden states x H H H
H H C
H C H

C C C

…

C(H → H)

2
1
0

0

P(x |  y)

0.408
0.034
0.272

0.136

*
*
*

*

+
+

+

0.864

Ĉ(q
i

! q

j

) = E(q
i

! q

j

) =
X

x

P̂ (x | y) · C(q
i

! q

j

in x)

=
M�1X

t=1

P̂ (X
t

= q

i

, X

t+1 = q

j

| y)



Expectation Maximization

estimated count 
of transitions 

in corpus

parameter 
estimate

corpus

E-step

aij ⇡
E(qi ! qj)

E(qi ! •) =
E(qi ! qj)P
j E(qi ! qj)

M-step

compute E(qi → qj)



Plan for computing E

• How can we compute     efficiently?  
Challenge: It is conditioned on y. 

• We compute 

• Do it in two steps: 
‣ compute 

‣ compute P(y)  

E(qi ! qj) =
M�1X

t=1

P̂ (Xt = qi, Xt+1 = qj | y)

P̂

⇠t(i, j) = P̂ (Xt = qi, Xt+1 = qj | y)

=
P̂ (Xt = qi, Xt+1 = qj , y)

P̂ (y)

⇠0t(i, j) = P̂ (Xt = qi, Xt+1 = qj , y)



⇠0t(i, j) = P̂ (Xt = qi, Xt+1 = qj , y)

X1

y1

Xt

yt

Xt+1

yt+1

XT

yT

qi qj

P̂ (Xt = qi, Xt+1 = qj , y)



⇠0t(i, j) = P̂ (Xt = qi, Xt+1 = qj , y)

X1

y1

Xt

yt

Xt+1

yt+1

XT

yT

qi qj

P̂ (Xt = qi, Xt+1 = qj , y)

=P̂ (y1, . . . , yt, Xt = qi) · P̂ (yt+1, Xt+1 = qj | y1, . . . , yt, Xt = qi)

· P̂ (yt+2, . . . , yT | y1, . . . , yt+1, Xt = qi, Xt+1 = qj)



⇠0t(i, j) = P̂ (Xt = qi, Xt+1 = qj , y)

X1

y1

Xt

yt

Xt+1

yt+1

XT

yT

qi qj

P̂ (Xt = qi, Xt+1 = qj , y)

= P̂ (y1, . . . , yt, Xt = qi) · P̂ (yt+1, Xt+1 = qj | Xt = qi) · P̂ (yt+2, . . . , yT | Xt+1 = qj)

=P̂ (y1, . . . , yt, Xt = qi) · P̂ (yt+1, Xt+1 = qj | y1, . . . , yt, Xt = qi)

· P̂ (yt+2, . . . , yT | y1, . . . , yt+1, Xt = qi, Xt+1 = qj)



⇠0t(i, j) = P̂ (Xt = qi, Xt+1 = qj , y)

X1

y1

Xt

yt

Xt+1

yt+1

XT

yT

qi qj

· aij · bj(wt+1) ·

P̂ (Xt = qi, Xt+1 = qj , y)

= P̂ (y1, . . . , yt, Xt = qi) · P̂ (yt+1, Xt+1 = qj | Xt = qi) · P̂ (yt+2, . . . , yT | Xt+1 = qj)

=P̂ (y1, . . . , yt, Xt = qi) · P̂ (yt+1, Xt+1 = qj | y1, . . . , yt, Xt = qi)

· P̂ (yt+2, . . . , yT | y1, . . . , yt+1, Xt = qi, Xt+1 = qj)



⇠0t(i, j) = P̂ (Xt = qi, Xt+1 = qj , y)

X1

y1

Xt

yt

Xt+1

yt+1

XT

yT

qi qj

· aij · bj(wt+1) ·= �t(i)

forward prob:

P̂ (Xt = qi, Xt+1 = qj , y)

= P̂ (y1, . . . , yt, Xt = qi) · P̂ (yt+1, Xt+1 = qj | Xt = qi) · P̂ (yt+2, . . . , yT | Xt+1 = qj)

↵t(i) = P (y1, . . . , yt, Xt = qi)

=P̂ (y1, . . . , yt, Xt = qi) · P̂ (yt+1, Xt+1 = qj | y1, . . . , yt, Xt = qi)

· P̂ (yt+2, . . . , yT | y1, . . . , yt+1, Xt = qi, Xt+1 = qj)



⇠0t(i, j) = P̂ (Xt = qi, Xt+1 = qj , y)

X1

y1

Xt

yt

Xt+1

yt+1

XT

yT

qi qj

· aij · bj(wt+1) ·= �t(i) �t+1(j)

forward prob: backward prob:

P̂ (Xt = qi, Xt+1 = qj , y)

= P̂ (y1, . . . , yt, Xt = qi) · P̂ (yt+1, Xt+1 = qj | Xt = qi) · P̂ (yt+2, . . . , yT | Xt+1 = qj)

↵t(i) = P (y1, . . . , yt, Xt = qi) �t(i) = P (yt+1, . . . , yt | Xt = qi)

=P̂ (y1, . . . , yt, Xt = qi) · P̂ (yt+1, Xt+1 = qj | y1, . . . , yt, Xt = qi)

· P̂ (yt+2, . . . , yT | y1, . . . , yt+1, Xt = qi, Xt+1 = qj)



Backward probabilities

• Base case, t = T: 

• Inductive case, compute for t = T-1, …, 1: 

• Exact mirror image of forward.

�t(i) = P (yt+1, . . . , yt | Xt = qi)

�T (i) = 1 for all i  *

*) this is different in J&M because of qF

�t(i) =
NX

j=1

aij · bj(yt+1) · �t+1(j)

qi

yt

bi(yt)

q1

q2

q3

�t+1(1)

�t+1(2)

�t+1(3)



Putting it all together

• Compute estimated transition counts for all i, j, t: 

• Compute overall estimated transition counts: 

• Revised estimate of transition probabilities:

⇠t(i, j) =
⇠0t(i, j)

P̂ (y)
=

↵t(i) · aij · bj(yt+1) · �t+1(j)P
q ↵T (q)

E(qi ! qj) =
T�1X

t=1

⇠t(i, j)

aij ⇡
E(qi ! qj)

E(qi ! •)



The other parameters

• Revise initial and emission probabilities using 
estimated counts, in completely analogous way. 

• Here’s what it looks like for emission prob:

b

j

(o) ⇡

0

B@
TX

t=1
yt=o

�

t

(j)

1

CA /

TX

t=1

�

t

(j)

estimated count of 
o emitted in state qj

estimated count of 
state qj

�t(j) = P (Xt = qj | y) =
P̂ (Xt = qj , y)

P̂ (y)
=

↵t(j) · �t(j)

P̂ (y)



Forward-Backward Algorithm

estimated count 
of transitions 

in corpus

parameter 
estimate

corpus

E-step

M-step

compute α, β, γ

compute a, b

Continue computation until parameters don’t change much.

Initialization: start with some estimation of parameters.



Example
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E-Step
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M-Step
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E-Step
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M-Step
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Result after 10 iterations
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Some remarks

• Forward-backward algorithm also called  
Baum-Welch Algorithm after inventors. 

• Special case of the expectation maximization 
algorithm: 
‣ E-Step: Compute expected values of relevant counts 

based on current parameter estimate. 

‣ M-Step: Adjust model based on estimated counts. 

• Runtime of each iteration is O(N2 T). 
Most of the time goes into E-step.



Some remarks

• EM algorithm is guaranteed to improve likelihood 
of corpus in each iteration. 

• However, can run into local maxima: would have to 
go through worse model to find globally best one. 

• Extremely sensitive to initial parameter estimate.  
Only useful in practice if HMM structure very 
strongly constrained (e.g. speech recognition).



Conclusion

• Evaluate tagger on accuracy on unseen data. 

• Training algorithms for HMM estimation: 
‣ supervised training from annotated data: 

maximum likelihood 

‣ unsupervised training from unannotated data: 
forward-backward


