Evaluating and Training HMMs

Computational Linguistics

Alexander Koller

10 November 2017

Example HMM: Eisner's Ice Cream

States represent weather on a given day: Hot, Cold Outputs represent number of ice creams Jason eats that day

Viterbi Algorithm: Example

$$
V_{t}(j)=\max _{x_{1}, \ldots, x_{t-1}} P\left(y_{1}, \ldots, y_{t}, x_{1}, \ldots, x_{t-1}, X_{t}=q_{j}\right) \quad V_{t}(j)=\max _{i=1}^{N} V_{t-1}(i) \cdot a_{i j} \cdot b_{j}\left(y_{t}\right)
$$

The Forward Algorithm

- Key idea: Forward probability $\alpha_{\mathrm{t}}(\mathrm{j})$ that HMM outputs $\mathrm{y}_{\mathrm{l}}, \ldots, \mathrm{y}_{\mathrm{t}}$ and then ends in $\mathrm{X}_{\mathrm{t}}=\mathrm{q}_{\mathrm{j}}$.

$$
\begin{aligned}
\alpha_{t}(j) & =P\left(y_{1}, \ldots, y_{t}, X_{t}=q_{j}\right) \\
& =\sum_{x_{1}, \ldots, x_{t-1}} P\left(y_{1}, \ldots, y_{t}, X_{1}=x_{1}, \ldots, X_{t-1}=x_{t-1}, X_{t}=q_{j}\right)
\end{aligned}
$$

- From this, can compute easily

$$
P\left(y_{1}, \ldots, y_{T}\right)=\sum_{q \in Q} \alpha_{T}(q)
$$

The Forward Algorithm $\alpha_{t}(j)=P\left(y_{1}, \ldots, y_{t}, X_{t}=q_{j}\right)$

- Base case, $\mathrm{t}=1$:

$$
\alpha_{1}(j)=P\left(y_{1}, X_{1}=q_{j}\right)=b_{j}\left(y_{1}\right) \cdot a_{0 j}
$$

- Inductive case, compute for $t=2, \ldots, T$:

$$
\begin{aligned}
\alpha_{t}(j) & =P\left(y_{1}, \ldots, y_{t}, X_{t}=q_{j}\right) \\
& =\sum_{i=1}^{N} P\left(y_{1}, \ldots, y_{t-1}, X_{t-1}=q_{i}\right) \cdot P\left(X_{t}=q_{j} \mid X_{t-1}=q_{i}\right) \cdot P\left(y_{t} \mid X_{t}=q_{j}\right) \\
& =\sum_{i=1}^{N} \alpha_{t-1}(i) \cdot a_{i j} \cdot b_{j}\left(y_{t}\right)
\end{aligned}
$$

Question 3a: Supervised learning

- Given a set of POS tags and annotated training data $\left(\mathrm{w}_{1}, \mathrm{t}_{1}\right), \ldots,\left(\mathrm{w}_{\mathrm{T}}, \mathrm{t}_{\mathrm{T}}\right)$, compute parameters for HMM that maximize likelihood of training data.

Maximum likelihood training

- Estimate bigram model for state sequence:

$$
a_{i j}=\frac{C\left(X_{t}=q_{i}, X_{t+1}=q_{j}\right)}{C\left(X_{t}=q_{i}\right)} \quad a_{0 j}=\frac{\# \text { sentences with } X_{1}=q_{j}}{\# \text { sentences }}
$$

- ML estimate for emission probabilities:

$$
b_{i}(o)=\frac{C\left(X_{t}=q_{i}, Y_{t}=o\right)}{C\left(X_{t}=q_{i}\right)}
$$

- Apply smoothing as you would for ordinary n -gram models (increase all counts C by one).

Evaluation

- How do you know how well your tagger works?
- Run it on test data and evaluate accuracy.
- Test data: Really important to evaluate on unseen sentences to get a fair picture of how well tagger generalizes.
- Accuracy: Measure percentage of correctly predicted POS tags.

Evaluation on test data

DT NN VBD NNS IN DT NN
The representative put chairs on the table.

NNP VBZ VBN TO VB NR
Secretariat is expected to race tomorrow.
Training corpus (annotated)

Trained system
(e.g. HMM)

Training

Evaluation on test data

DT NN VBD NNS IN DT NN

```
NNP VBZ NNP
John loves Mary.
```

```
NNP VBZ VBN TO VB
NR
```

Secretariat is expected to race tomorrow.
Test corpus (annotated)

Training

Evaluation on test data

NNP VBZ NNP John loves Mary.		
Test corpus (annotated)		
		Test corpus
	(without annotations)	

John	loves	Mary.

Training

Evaluation on test data

Training

Evaluation

Evaluation on test data

DT NN VBD NNS IN DT NN
The representative put chairs on the table.

NNP VBZ VBN TO VB NR
Secretariat is expected to race tomorrow.
Training corpus (annotated)

- Given a set of POS tags and unannotated training data $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{T}}$, compute parameters for HMM that maximize likelihood of training data.
- Useful because annotated data is expensive to obtain, but raw text is really cheap.

The representative put chairs on the table.
Secretariat is expected to race today.

The setup

The setup

The setup

Observations: $2,3,3,2,3,2,3,2,2,3,1,3,3, \ldots$

The setup

- If we had counts of state transitions in corpus, we could simply use ML estimation.

$$
a_{i j}=\frac{C\left(q_{i} \rightarrow q_{j}\right)}{C\left(q_{i} \rightarrow \bullet\right)}
$$

- Idea: replace actual counts by estimated counts.

$$
a_{i j} \approx \frac{\hat{C}\left(q_{i} \rightarrow q_{j}\right)}{\hat{C}\left(q_{i} \rightarrow \bullet\right)}
$$

- How can we estimate counts?

Estimated counts

Observations y	3	1	3	$\mathrm{C}(\mathrm{H} \rightarrow \mathrm{H})$			$\mathrm{P}(\mathrm{x} \mid \mathrm{y}$
Hidden states x	H	H	H		2	*	0.408
	H	H	C		1	*	0.034
	H	C	H		0	*	0.272
	C	C	C			*	0.136

$$
\begin{aligned}
\hat{C}\left(q_{i} \rightarrow q_{j}\right) & =E\left(q_{i} \rightarrow q_{j}\right)=\sum_{x} \hat{P}(x \mid y) \cdot C\left(q_{i} \rightarrow q_{j} \text { in } x\right) \\
& =\sum_{t=1}^{M-1} \hat{P}\left(X_{t}=q_{i}, X_{t+1}=q_{j} \mid y\right)
\end{aligned}
$$

Expectation Maximization

Plan for computing E
 $$
E\left(q_{i} \rightarrow q_{j}\right)=\sum_{t=1}^{M-1} \hat{P}\left(X_{t}=q_{i}, X_{t+1}=q_{j} \mid y\right)
$$

- How can we compute \hat{P} efficiently? Challenge: It is conditioned on y .
- We compute $\xi_{t}(i, j)=\hat{P}\left(X_{t}=q_{i}, X_{t+1}=q_{j} \mid y\right)$

$$
=\frac{\hat{P}\left(X_{t}=q_{i}, X_{t+1}=q_{j}, y\right)}{\hat{P}(y)}
$$

- Do it in two steps:
- compute $\xi_{t}^{\prime}(i, j)=\hat{P}\left(X_{t}=q_{i}, X_{t+1}=q_{j}, y\right)$
- compute $\mathrm{P}(\mathrm{y})$

$$
\xi_{t}^{\prime}(i, j)=\hat{P}\left(X_{t}=q_{i}, X_{t+1}=q_{j}, y\right)
$$

$$
\hat{P}\left(X_{t}=q_{i}, X_{t+1}=q_{j}, y\right)
$$

$$
\xi_{t}^{\prime}(i, j)=\hat{P}\left(X_{t}=q_{i}, X_{t+1}=q_{j}, y\right)
$$

$$
\begin{gathered}
\hat{P}\left(X_{t}=q_{i}, X_{t+1}=q_{j}, y\right) \\
=\hat{P}\left(y_{1}, \ldots, y_{t}, X_{t}=q_{i}\right) \cdot \hat{P}\left(y_{t+1}, X_{t+1}=q_{j} \mid y_{1}, \ldots, y_{t}, X_{t}=q_{i}\right) \\
\cdot \hat{P}\left(y_{t+2}, \ldots, y_{T} \mid y_{1}, \ldots, y_{t+1}, X_{t}=q_{i}, X_{t+1}=q_{j}\right)
\end{gathered}
$$

$$
\xi_{t}^{\prime}(i, j)=\hat{P}\left(X_{t}=q_{i}, X_{t+1}=q_{j}, y\right)
$$

$$
\begin{gathered}
\hat{P}\left(X_{t}=q_{i}, X_{t+1}=q_{j}, y\right) \\
=\hat{P}\left(y_{1}, \ldots, y_{t}, X_{t}=q_{i}\right) \cdot \hat{P}\left(y_{t+1}, X_{t+1}=q_{j} \mid y_{1}, \ldots, y_{t}, X_{t}=q_{i}\right) \\
\cdot \hat{P}\left(y_{t+2}, \ldots, y_{T} \mid y_{1}, \ldots, y_{t+1}, X_{t}=q_{i}, X_{t+1}=q_{j}\right) \\
=\hat{P}\left(y_{1}, \ldots, y_{t}, X_{t}=q_{i}\right) \cdot \hat{P}\left(y_{t+1}, X_{t+1}=q_{j} \mid X_{t}=q_{i}\right) \cdot \hat{P}\left(y_{t+2}, \ldots, y_{T} \mid X_{t+1}=q_{j}\right)
\end{gathered}
$$

$$
\xi_{t}^{\prime}(i, j)=\hat{P}\left(X_{t}=q_{i}, X_{t+1}=q_{j}, y\right)
$$

$$
\begin{gathered}
\hat{P}\left(X_{t}=q_{i}, X_{t+1}=q_{j}, y\right) \\
=\hat{P}\left(y_{1}, \ldots, y_{t}, X_{t}=q_{i}\right) \cdot \hat{P}\left(y_{t+1}, X_{t+1}=q_{j} \mid y_{1}, \ldots, y_{t}, X_{t}=q_{i}\right) \\
\cdot \hat{P}\left(y_{t+2}, \ldots, y_{T} \mid y_{1}, \ldots, y_{t+1}, X_{t}=q_{i}, X_{t+1}=q_{j}\right) \\
=\hat{P}\left(y_{1}, \ldots, y_{t}, X_{t}=q_{i}\right) \cdot \hat{P}\left(y_{t+1}, X_{t+1}=q_{j} \mid X_{t}=q_{i}\right) \cdot \hat{P}\left(y_{t+2}, \ldots, y_{T} \mid X_{t+1}=q_{j}\right) \\
\cdot a_{i j} \cdot b_{j}\left(w_{t+1}\right)
\end{gathered}
$$

$$
\xi_{t}^{\prime}(i, j)=\hat{P}\left(X_{t}=q_{i}, X_{t+1}=q_{j}, y\right)
$$

$$
\xi_{t}^{\prime}(i, j)=\hat{P}\left(X_{t}=q_{i}, X_{t+1}=q_{j}, y\right)
$$

Backward probabilities

$$
\beta_{t}(i)=P\left(y_{t+1}, \ldots, y_{t} \mid X_{t}=q_{i}\right)
$$

- Base case, $\mathrm{t}=\mathrm{T}$:

$$
\beta_{T}(i)=1 \text { for all } \mathrm{i} *
$$

- Inductive case, compute for $t=T-1, \ldots, 1$:

$$
\beta_{t}(i)=\sum_{j=1}^{N} a_{i j} \cdot b_{j}\left(y_{t+1}\right) \cdot \beta_{t+1}(j)
$$

- Exact mirror image of forward.

${ }^{*}$) this is different in J\&M because of q_{F}

Putting it all together

- Compute estimated transition counts for all $\mathrm{i}, \mathrm{j}, \mathrm{t}$:

$$
\xi_{t}(i, j)=\frac{\xi_{t}^{\prime}(i, j)}{\hat{P}(y)}=\frac{\alpha_{t}(i) \cdot a_{i j} \cdot b_{j}\left(y_{t+1}\right) \cdot \beta_{t+1}(j)}{\sum_{q} \alpha_{T}(q)}
$$

- Compute overall estimated transition counts:

$$
E\left(q_{i} \rightarrow q_{j}\right)=\sum_{t=1}^{T-1} \xi_{t}(i, j)
$$

- Revised estimate of transition probabilities:

$$
a_{i j} \approx \frac{E\left(q_{i} \rightarrow q_{j}\right)}{E\left(q_{i} \rightarrow \bullet\right)}
$$

The other parameters

- Revise initial and emission probabilities using estimated counts, in completely analogous way.
- Here's what it looks like for emission prob:

$$
\begin{aligned}
& \gamma_{t}(j)=P\left(X_{t}=q_{j} \mid y\right)=\frac{\hat{P}\left(X_{t}=q_{j}, y\right)}{\hat{P}(y)}=\frac{\alpha_{t}(j) \cdot \beta_{t}(j)}{\hat{P}(y)} \\
& b_{j}(o) \approx\left(\sum_{\substack{t=1 \\
y_{t}=o}}^{T} \gamma_{t}(j)\right) / \sum_{t=1}^{T} \gamma_{t}(j) \\
& \varlimsup_{\substack{\text { estimated count of } \\
\text { o emitted in state } q_{j}}}^{\begin{array}{c}
\text { estimated count of } \\
\text { state } \mathrm{q}_{\mathrm{j}}
\end{array}}
\end{aligned}
$$

Forward-Backward Algorithm

Initialization: start with some estimation of parameters.

Continue computation until parameters don't change much.

Example

Step 1: initial model

E-Step

M-Step

Step 2: revised model

$2,3,3,2,3,2,3,2,2,3,1,3,3,1,1,1,2,1,1,1,3,1,2,1,1,1,2,3,3,2,3,2,2$

E-Step

M-Step

Step 3: revised model

$2,3,3,2,3,2,3,2,2,3,1,3,3,1,1,1,2,1,1,1,3,1,2,1,1,1,2,3,3,2,3,2,2$

Result after 10 iterations

Some remarks

- Forward-backward algorithm also called Baum-Welch Algorithm after inventors.
- Special case of the expectation maximization algorithm:
- E-Step: Compute expected values of relevant counts based on current parameter estimate.
- M-Step: Adjust model based on estimated counts.
- Runtime of each iteration is $\mathrm{O}\left(\mathrm{N}^{2} \mathrm{~T}\right)$. Most of the time goes into E-step.

Some remarks

- EM algorithm is guaranteed to improve likelihood of corpus in each iteration.
- However, can run into local maxima: would have to go through worse model to find globally best one.
- Extremely sensitive to initial parameter estimate. Only useful in practice if HMM structure very strongly constrained (e.g. speech recognition).

Conclusion

- Evaluate tagger on accuracy on unseen data.
- Training algorithms for HMM estimation:
- supervised training from annotated data: maximum likelihood
- unsupervised training from unannotated data: forward-backward

