n-gram models

Computational Linguistics

Alexander Koller

3 November 2017

Let’s play a game

e | will write a sentence on the board.

e Each of you, in turn, gives me a word to continue
that sentence, and I will write it down.

Let’s play another game

e You write a word on a piece of paper.

e You get to see the piece of paper of your neighbor,
but none of the earlier words.

e In the end, I will read the sentence you wrote.

Statistical models in NLP

o Generative statistical model of language:
pd P(w) over NL expressions that we can observe.

» w may be complete sentences or smaller units

» will later extend this to pd P(w, t) with hidden random
variables t

e Assumption: A corpus of observed sentences w is
generated by repeatedly sampling from P(w).

o We try to estimate the parameters of the prob dist
from the corpus, so we can make predictions about
unseen data.

«ill Fido 3G

Messages

2012-05-17 9:31 PM
(Yeah come byl

Ok gonna be there in 5
monsoons

(So 5 years?l

Delivered

a N @
@ DAMN YOUAUTOCORRECT.COM ,

o|w|E[R|T|v|u]1]o|P
Als|pfFla|H]J]K|L
_hz|x|clvis|NmME
123 @ “ return

An example

wil. Orange... < 12:28
Tinkler

@ 87% &

Messages

;) . What are your plans
for today then?x

DAMN YOUAUTOCORRECT.COM

o|w|E|R|T]v|u|1fo]P
Als|o|Fja]H]JfK]L
_z|x|c]viB|N|mE]

11:54 AM

u... Koodo 3G

Messages

What would that be, going
back to work in about 20
minutes

White whore milk? Not
sure where to get that but

il try 2

('Fuck not duck shit |

DAMN YOUAUTOCORRECT.COM

Word-by-word random process

o A language model (LM) is a probability distribution
P(w) over sentences.

e Think of it as random process that generates
sentences word by word:

X1 Xz X3 X4

l l l l

copper is a metal

Process from our game

Each of you = a random variable X
(€8)» o 0 .
event “X; = w¢ means word at position t is w.

When you chose wy, you could see the outcomes of
the previous variables: X; = wi, ..., X1 = We.1.

Thus, X; followed a pd

PX:=w: | Xqi =wy,..., X4 1 = weq)

Process from our game

e Assume that X; follows some given PD
PX:=w: | Xi =wy,..., X471 = weq)
e Then probability of the entire corpus (or sentence)
W = W1 ... Wy iS joint probability

P(wlwn) — P(wl)-P(wg\wl)-P(w3|w1,w2)
-...-P(wn\wl,...,wn_l)

/

How do we estimate these?

Statistical models

e We want to use prob theory to estimate a model of a
generating process from observations about its
outcomes.

e Simpler case: we flip a coin 100 times and observe
H 61 times. Should we believe that it is a fair coin?

» observation: absolute freq C(H) = 61, C(T) = 39;
thus relative freq f(H) = 0.61, £f(T) = 0.39

» model: assume rv X follows a Bernoulli distribution,

i.e. X has two outcomes, and there is a value p such that
PX=H)=pand PX=T)=1-p.

» want to estimate the parameter p of this model

Fit of model and observations

e How do we quantify how well a model fits with the
observations we made?

e Out of the many possibilities, easiest is to look at
the likelihood: probability P(O ; p) of the
observations O given the values p for the model
parameters.

o Maximum likelihood estimation: find parameter
values for which the likelihood of O is maximal.

likelihood L(O ; p)

Likelihood functions

likelihood L(O ; p) = p&H * (1-p)C(M* binom(N, C(H))

0.4 | | | |
0.35 -

t=1 —
count C(H): t=3 —— -~
{ = 0 ——

—
w
|

0.25 N =10

O
N

0.15

O
—

0 0.2 0.4 0.6 0.8 1
parameter p

(Wikipedia page on MLE; licensed from Casp11 under CC BY-SA 3.0)

ML Estimation

e Goal: Find value for p that maximizes the likelihood
of the observations.

e For Bernoulli models, it is extremely easy to estimate
the parameters that maximize the likelihood:

» P(X'=a)=1{(a)

» in the coin example above, just take p = {(H)

e Can prove that relative frequency is an ML estimator
for a lot of different statistical models (Bernoulli,
multinomial, etc.; see link on course page).

Parameters of the model

Our model has one parameters for
P(X¢=wt | wi, ..., we1) for all tand wy, ..., we.

Can use maximum likelihood estimation:

Clwy ... wp_qwy)

P(UJt ‘ w1, ... 7wt—1) — C(wl o 1)

Let’s say a natural language has 10° different words.
How many tuples wi, ... w; of length t?

y t=1:10°
» t=2:1010 different contexts

» t=3:101>; etc.

Sparse data problem

o Typical corpus sizes:

» Brown corpus: about 10° tokens

» Gigaword corpus: about 10° tokens

e Problem exacerbated by Zipf's Law:

» Order all words by their absolute frequency in corpus
(rank 1 = most frequent word).

» Then log(absolute frequency) falls linearly with log(rank);
i.e., most words are really rare.

» Zipf's Law is very robust across languages and corpora.

Independence assumptions

e Lets pretend that word at position t depends only
on the words at positions t-1, t-2, ..., t-k for some
fixed k (Markov assumption of degree k).

e Then we get an n-gram model, with n = k+1:
P(Xt | Xl, « .. 7Xt—1) — P(Xt ‘ Xt_k, “ .. 7Xt—1)
for all t.

e Special names for unigram models (n = 1),
bigram models (n = 2), trigram models (n = 3).

» Thus our second game was a bigram model.

Independence assumptions

e We assume statistical independence of X; from
events that are too far in the past, although we
know that this assumption is incorrect.

e Typical tradeoft in statistical NLP:

» if model is too shallow, it won't represent important
linguistic dependencies

» if model is too complex, its parameters can't be estimated
accurately from the available data

low n high »

< >
modeling errors estimation errors

Bigrams: an example

JOHN READ MOBY DICK
MARY READ A DIFFERENT BOOK
SHE READ A BOOK BY CHER

p(JOHN READ A BOOK)

= p(JOHN|e) p(READ|JOHN) p(A|READ) p(BOOK|A) p(e|BOOK)

__ (e JOHN) ¢(JOHN READ) «(READ A) ¢(A BOOK) ¢(BOOK e)
Yopclew) > c(JOHN w) > c¢(READ w) > c(Aw) > c(BOOK w)

1 1 2 1 1

3 1 3 2 2

0.06

Q

(Chen & Goodman 98)

n-grams: Evaluation

Measure quality of n-gram model using perplexity
PP(w) = P(w1 ... wn) /N of test data w=wy ... wn.

To get honest picture of model’s performance,
evaluate it on test data that was not used for training.

training corpus test corpus
model » evaluation

Maximum likelihood model for training corpus
is not necessarily good for test corpus (overfitting).

Bigrams: a problem

JOHN READ MOBY DICK
MARY READ A DIFFERENT BOOK
SHE READ A BOOK BY CHER

p(CHER READ A BOOK)

= p(CHER|e) p(READ|CHER) p(A|READ) p(BOOK|A) p(e|BOOK)

__ ¢(e CHER) ¢(CHER READ) ¢(READ A) (A BOOK) ¢(BOOK e)
Yo pcew) > c(CHER w) > ¢(READ w) > c(Aw) > c¢(BOOK w)

— 0 o) 2 1 1

_ 3 1 3 2 2

(Chen & Goodman 98)

Unseen data

e ML estimate is “optimal” only for the corpus from
which we computed it.

e Usually does not generalize directly to new data.

» Ok for unigrams, but there are so many bigrams.

e ML estimate predicts probability of 0 for n-grams
that were not observed in training. This is a disaster
because product with 0 is always 0.

Smoothing techniques

e Basicidea: Replace ML estimate

C W; —1W;
Py (ws | wi—1) = (g(w,ll))

by estimate with adjusted bigram count
C* (wi_ 1 wz)

P*(wz ‘ wi_l) = C(wi_1)

e Redistribute counts from seen to unseen bigrams.

o Generalizes easily to n-gram models with n > 2.

Smoothing

3
> P(...)=0
2
1
true
prob dist

the

up
chickens
his
mussels
whatever
garbage
affects

C(eat X) in Brown corpus

(@)
=
i e
i
O
o
&
W
)
 am
Q
d
d
<

5

>P(..) <1

4

A}

) |
)\
) 3
) 3
) 3
2\ 3
b

L}

|
| |
!

3

>P(..)>0

~.
™~
-
- oy - - -
-
LB - o -

2

1

0

oM
M

M

cM

™

M
syape
o3eqied
I9AdBYM
sTossnuu
STY
SUOIYD

dn

elopl

Add-one Smoothing

e Count every bigram (seen or unseen) one more
time than in corpus and normalize:

Clwj—iw;) +1 Clwi—qw;) +1

Plap(wi [wi1) = >

w(Cwiw) +1) Clwi—1) + |V

JOHN READ MOBY DICK
MARY READ A DIFFERENT BOOK
SHE READ A BOOK BY CHER

|V| = 11, |seen bigram types| = 11
= 110 unseen bigrams

p(JOHN READ A BOOK)

141 141 142 141 141
1143 1141 1143 1142 1142

~ 0.0001

p(CHER READ A BOOK)

_ 140 140 14-2 141 141
- 1143 1141 1143 1142 1142

~ 0.00003

Add-one Smoothing

e Easy to implement, but dramatically overestimates
probability of unseen events.

» In the Cher example: Pjp(unseen | wi.1) > 1/14;
thus “count”(wi.; unseen) = 110 * 1/14 = 7.8.

» Compare against 12 bigram tokens in training corpus.

e Learn all about how to really do smoothing in the
course “Statistical NLP™.

Conclusion

Statistical models of natural language.
Language models with n-grams.
The problem of data sparseness.

Smoothing.

