
Computational Linguistics

Assignment 3 (2017-11-21)

Winter Semester 2017/18 – Prof. Dr. Alexander Koller

Context-free grammars and CKY parsing

In this assignment, you get to experiment with large-scale context-free gram-
mar (CFG) parsing using Python and NLTK. More specifically, we are as-
king you to implement the Cocke-Kasami-Younger (CKY) algorithm for
bottom-up CFG parsing, and apply it to the word and the parsing problem
of English.

The ingredients are: the grammar, the test sentences, and the parser. We
provide the first two ingredients. Please implement the parser from scratch,
using NLTK only to represent grammars and trees.

The grammar stems from a project dealing with implementing spoken lan-
guage processing systems in the airline industry – the Airline Travel In-
formation System (ATIS). The ATIS CFG is available in the NLTK data

package, together with 98 test sentences. You can initialize the resources
this way:

load the grammar

g = nltk.data.load("grammars/large_grammars/atis.cfg")

load the raw sentences

s = nltk.data.load("grammars/large_grammars/atis_sentences.txt", "raw")

extract the test sentences

t = nltk.parse.util.extract_test_sentences(s)

Note that NLTK already implements a number of parsing algorithms (see
nltk.parse for the list). You can try one to see if you loaded the grammar
correctly:

initialize the parser

parser = nltk.parse.BottomUpChartParser(grammar)

parse all test sentences

for sentence in s:

parser.chart_parse(sentence[0])

However, the NLTK version of the ATIS grammar is not in Chomsky normal
form (CNF), which you will need for your CKY parser. Feel free to imple-
ment a conversion module for extra credit, but for your convenience, we have
already converted the ATIS CFG into CNF; you can download it from http:

//www.coli.uni-saarland.de/~koller/materials/anlp/atis.zip. You
can then read the grammar from the file using CFG.fromstring() (in NLTK
3) and utilize the nice features of the nltk.grammar module on the resulting
object.

Recognizer. Implement the CKY algorithm and use it as a recognizer.
That is, given an input sentence, the procedure should decide whether the
sentence is in the language of the CFG or not. Test the recognizer on the
ATIS test sentences, but also by feeding it other sentences to see whether
it properly rejects ungrammatical sentences as well. Submit some of the
ungrammatical sentences you tried.

Parser. Now extend your CKY recognizer into a parser by adding back-
pointers. Also implement a function that extracts the set of all parse trees
from the backpointers in the chart. Feel free to use the NLTK module
nltk.tree for this purpose; notice that only ImmutableTrees can be used
as elements of Python sets, whereas raw Trees cannot.

Submit your code, outputs, and a README file. The outputs should consist
of at least: (1) a list of ATIS test sentences with tab-separated numbers of
parse trees, and (2) pictures of the parse trees for an ATIS test sentence of
your choice with less than five parses. You can visualize an NLTK tree using
its draw method.

Extra credit If you still have time left, here’s a project for extra credit.
Perhaps it has occurred to you that it is quite wasteful to compute all parse
trees just to find out how many parse trees there are. Figure out how to
compute the number of parse trees for an entry A ∈ Ch(i, k) from your chart
with backpointers, without actually computing these parse trees. Verify that
you get the correct results, and compare the efficiency of your new procedure
to your earlier solution.

Turn in before class on 2017-12-05, by email to f.capuano1991@gmail.com.

