
Computational Linguistics

Assignment 2 (2017-11-07)

Winter Semester 2017/18 – Prof. Dr. Alexander Koller

Part-of-speech tagging with HMMs

Implement a bigram part-of-speech (POS) tagger based on Hidden Markov
Models from scratch. Using NLTK is disallowed, except for the modules
explicitly listed below. For this, you will need to develop and/or utilize the
following modules:

1. Corpus reader and writer
2. Training procedure, including smoothing
3. Viterbi tagging, including unknown word handling
4. Evaluation

The task is mostly very straightforward, but each step requires careful de-
sign. Thus, we suggest you proceed in the following way.

Viterbi algorithm. First, implement the Viterbi algorithm for finding the
optimal state (tag) sequence given the sequence of observations (words). We
suggest you test your implementation on a small example for which you
know the correct tag sequence, such as the Eisner’s Ice Cream HMM from
the lecture. Make sure your Viterbi algorithm runs properly on the example
before you proceed to the next step. There are plenty of other detailed
illustrations for the Viterbi algorithm on the Web from which you can take
example HMMs.

Training. Second, learn the parameters of your HMM from data, i.e. the
initial, transition, and emission probabilities. Implement a maximum like-
lihood training procedure for supervised learning of HMMs.

You can get a corpus at http://www.coli.uni-saarland.de/~koller/

materials/anlp/de-utb.zip. It contains a training set, a test set, and
an evaluation set. The training set (de-train.tt) and the evaluation set
(de-eval.tt) are written in the commonly used CoNLL format. They are
text files with two colums; the first column contains the words, the POS tags



are in the second column, and empty lines delimit sentences. The test set
(de-test.t) is a copy of the evaluation set with tags stripped, as you should
tag the test set using your tagger and then compare your results with the
gold-standard ones in the evaluation set. The corpus uses the 12-tag univer-
sal POS tagset by Petrov et al. (2012).

Experiment with at least unsmoothed distributions and Laplace add-one
smoothing. If you like, you are welcome to use any NLTK data structures
from the modules nltk.corpus.reader (and submodules) and nltk.probability.
The latter includes a number of smoothing procedures, which you may want
to apply to your corpus frequency counts. If you use one of these, take
care to make the smoothed probability distributions sum to one (see the
SUM_TO_ONE parameter).

Evaluation. Once you have trained a model, evaluate it on the unseen data
from the test set. Run the Viterbi algorithm with each of your models, and
output a tagged corpus in the two-column CoNLL format (*.tt). We will
provide an evaluation script on Piazza. Run it on the output of your tagger
and the evaluation set and report your results.

Note that your tagger will initially fail to produce output for sentences
that contain words you haven’t seen in training. If you have such a word w
appear at sentence position t, you will have bj(w) = 0 for all states/tags j,
and therefore Vt(j) = 0 for all j. Adapt your tagger by implementing the
following crude approach to unknown words. Whenever you get Vt(j) = 0
for all j because of an unknown word at position t, pretend that bj(w) = 1
for all j. This will basically set Vt(j) = maxi Vt−1(i) · aij , and allow you to
interpolate the missing POS tag based on the transition probabilities alone.

Extra credit. The task is challenging as it stands. However, feel free to
go further for extra credit, e.g. by doing one of the following: implement
better unknown word handling, use a trigram tagger, plot a learning curve
for your tagger (accuracy as a function of training data size), plot a speed
vs. sentence length curve.

Please submit your code, instructions for running your tagger and
tagging output(s). Document any additional data you submit. With
this, you will have implemented your first POS tagger! Well done! ,

Turn in before class on 2017-11-21, by email to f.capuano1991@gmail.com.


